Skip to main content

New NMR Structure Determination Methods for Prenylated Phenols

  • Chapter
Plant Polyphenols 2

Part of the book series: Basic Life Sciences ((BLSC,volume 66))

  • 1191 Accesses

Abstract

Recently, the occurrences of isoprenoid-substituted phenols from natural sources have become fairly familiar. Over the past 20 years, there have been increasing reports of isoprenylated compounds with structural, biological, and pharmacological interest.1 Some of them have interesting bioactivities, e.g., antitumor promoting activity,2 hypotensive effect,3 antagonism for bombesin receptor,4 inhibitory effects for some enzymes,5,6 because they have both hydrophilic and hydrophobic groups in the molecule. It would not seem that use of modern NMR techniques (e.g., 2D NMR measurements) could result in the proposing of an incorrect structure. On the other hand, many structures of isoprenoid-substituted phenols had been reported without unambiguous evidence before 2D NMR spectrometry became routine work. Some structures were revised in reinvestigation of the plant source or in conflicting of a structure for other compounds. Nevertheless, most compounds have not been thoroughly described when a significant bioactivity is not found in the sources.7 We wanted to get new techniques for the inspection of proposed structure by using earlier reported data. In the course of our study on phenolic compounds from medicinal plants, we found two new NMR methods for structure determination of 3-methyl-2-butenyl (prenyl) or (E)-3,7-dimethyl-2,6-octadienyl (geranyl) phenols. These methods also suit our objective of reinspecting previously reported structures. The first method involves classification with variation in the chemical shift of methylene carbon of the prenyl group and the second method is based on variation in the chemical shift of the 5-hydroxy proton of prenylated flavonoids. In this chapter, we describe these methods and a third method of classification of isoprenoid-substituted flavones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron D.; Ibrahim R.K. Isoprenylated flavonoids—a survey. Phytochemistry 43:921 (1996).

    Article  CAS  Google Scholar 

  2. Yoshizawa S.; Suganuma M.; Fujiki H.; Fukai T., Nomura T.; Sugimura T. Morusin, isolated from root bark of Morus alba L., inhibits tumour promotion of teleocidin. Phytotherapy Res. 3:193 (1989).

    Article  CAS  Google Scholar 

  3. Nomura, T. Phenolic compounds of the mulberry tree and related plants. In: Herz, W.; Grisebach, H.; Kirby, G.W.; Tamm, Ch. (eds.) Progress in the chemistry of organic natural products, Vol. 53, Springer-Verlag, Wien, p. 87 (1988).

    Chapter  Google Scholar 

  4. Mihara S.; Hara M.; Nakamura M.; Sakurawi K.; Tokura K.; Fujimoto M.; Fukai T.; Nomura T. Non-peptide bombesin receptor antagonists, kuwanon G and H, isolated from mulberry. Biochem. Biophys. Res. Commun. 213:594 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. Yanagisawa, T.; Sato, T.; Chin, M. Chen, Z.; Mitsuhashi, H.; Fukai, T.; Hano, Y.; Nomura, T. Testosterone 5α-reductase inhibitors of Morus flavonoids. In: Das, N.P. (ed.) Flavonoids in biology and medicine III, current issues in flavonoids research. National University of Singapore, Singapore, p. 557 (1990).

    Google Scholar 

  6. Reddy G.R.; Ueda N.; Hada T.; Sackeyfio A.C.; Yamamoto S.; Hano Y.; Aida M.; Nomura T. A prenylflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor. Biochem. Phar. 41:115 (1991).

    Article  CAS  Google Scholar 

  7. Tahara S. Structural diversity in isoflavonoids and erroneously proposed structures (in Japanese). Kagaku to Seibutsu (Chem. Biol.; J. Jpn. Agrical. Chem. Soc.) 29:493 (1991).

    CAS  Google Scholar 

  8. Fukai T.; Nomura T. NMR spectra of isoprenoid substituted phenols. 1._Constituent of the Moraceae plants. 5._Revised structures of broussoflavonols C and D, and the structure of broussoflavonol E. Heterocycles 29:2379 (1989).

    Article  CAS  Google Scholar 

  9. Nomura T.; Hano Y. Isoprenoid-substituted phenolic compounds of Moraceous plants. Nat. Prod. Rep. 11:205 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. Nomura T.; Hano Y.; Aida M. Isoprenoid-substituted flavonoids from Artocarpus plants (Moraceae). Heterocycles 47:1179 (1998).

    Article  CAS  Google Scholar 

  11. Ikuta J.; Hano Y.; Nomura T.; Kawakami Y.; Sato T. Constituents of the cultivated mulberry tree. 32._Components of Broussonetia kazinoki Sieb. 1._Structures of two new isoprenylated flavans and five new isoprenylated 1,3-diphenylpropane derivatives. Chem. Pharm. Bull. 34:1968 (1986).

    Article  CAS  Google Scholar 

  12. Tahara S.; Moriyama M.; Ingham J.L.; Mizutani J. Structure revision of piscidone, a major isoflavonoid in the root bark of Piscidia erythrina. Phytochemistry 31:679 (1992).

    Article  CAS  Google Scholar 

  13. Lin, C.-H.; Chiu, P.-N.; Fang, S.-C.; Shieh, B.-J.; Wu, R.-R. Revised structure of broussoflavonol G and the 2D NMR spectra of some related prenylflavonoids. Phytochemistry 41:1215 (1996).

    Article  CAS  Google Scholar 

  14. Fukai T.; Nomura T. Variations in the chemical shift of benzylic methylene carbon of prenyl group on heterocyclic prenylphenols, Heterocycles 42:911 (1996).

    Article  CAS  Google Scholar 

  15. Nomura, T.; Fukai, T. Phenolic constituents of licorice (Glycyrrhiza species). In: Herz, W.; Kirby, G.W.; Moore, R.E.; Steglich, W.; Tamm, Ch. (eds.) Progress in the chemistry of organic natural products, Vol. 73._Springer-Verlag, Wien, p. 1 (1998).

    Google Scholar 

  16. Nomura, T.; Fukai, T. Novel methods of structure determination of prenylated phenols with 1H-and 13C-NMR spectra. In: Ageta, H.; Aimi, N.; Ebizuka, Y.; Fujita, T.; Honda, G. (eds.) Towards natural medicine research in 21st century, proceedings of the international symposium on natural medicines. Elsevier, Amsterdam, p. 561 (1998).

    Google Scholar 

  17. Dhami K.; Stothers S. 13C NMR studies. 8._13C spectra of some substituted anisoles. Can. J. Chem. 44:2855 (1966).

    Article  CAS  Google Scholar 

  18. Fukai T.; Wang Q.-H.; Nomura T. Phenolic constituents of Glycyrrhiza species. 6._Six prenylated phenols from Glycyrrhiza uralensis. Phytochemistry 30:1245 (1991).

    Article  CAS  Google Scholar 

  19. Furukawa, H.; Yogo, M.; Wu, T.-S. Acridone alkaloids. 10._13C-nuclear magnetic resonance spectra of acridone alkaloids. Chem. Pharm. Bull. 31:3084 (1983).

    Article  CAS  Google Scholar 

  20. Harborne, J.B. (ed.). The flavonoids: advances in research since 1980._Chapman and Hall, London (1988).

    Google Scholar 

  21. Harborne, J.B. (ed.). The flavonoids: advances in research since 1986._Chapman and Hall, London (1994).

    Google Scholar 

  22. Feigl, F.; Anger, V. Spot tests in organic analysis, 7th ed. (Engl. trans, by Oesper, R.E.), Elsevier, Amsterdam, p. 185 (1966).

    Google Scholar 

  23. Sherif E.A.; Gupta R.K.; Krishnamurti M. Anomalous A1C13 induced U.V. shift of C-alkylated polyphenols. Tetrahedron Lett. 21:641 (1980).

    Article  CAS  Google Scholar 

  24. Jain A.C.; Gupta R.C.; Sarpal P.D. Synthesis of (±) lupinifolin, di-O-methyl xanthohumol and isoxanthohohumol and related compounds. Tetrahedron 34:3563 (1978).

    Article  CAS  Google Scholar 

  25. Arnone, A.G., Cardillo, A.G., Merlini, L., Mondelli, R. NMR effects of acetylation and long-range coupling as a tool for structural elucidation of hydroxychromenes. Tetrahedron Lett.:4201 (1967).

    Google Scholar 

  26. Chari, V.M.; Ahmad, S.; Österdahl, B.-G. 13C NMR Spectra of chromeno-and prenylated flavones structure revision of mulberrin, mulberrochromene, cyclomulberrin and cyclomulberrochromene. Z. Naturforsch. 33b:1547 (1978).

    CAS  Google Scholar 

  27. Wehrli, F.W. Proton-coupled 13C nuclear magnetic resonance spectra involving 13C-1H spin-spin coupling to hydroxyl-protons, a complementary assignment aid. J. Chem. Soc., Chem. Commun.:663 (1975).

    Google Scholar 

  28. Shirataki Y.; Yokoe I.; Endo M.; Komatsu M. Determination of C-6 or C-8 substituted flavanone using 13C-1H long range coupling and the revised structures of some flavanones. Chem. Pharm. Bull. 33:444 (1985).

    Article  CAS  Google Scholar 

  29. Fukai T.; Nishizawa J.; Nomura T. Phenolic constituents of Glycyrrhiza species. 14._Variations in the chemical shift of the 5-hydroxyl proton of isoflavones; two isoflavones from licorice. Phytochemistry 36:225 (1994).

    Article  CAS  Google Scholar 

  30. Fukai T.; Wang Q.-T; Takayama M.; Nomura T. Phenolic constituents of Glycyrrhiza species. 4._Structures of five new prenylated flavonoids, gancaonins L, M, N, O, and P from aerial parts of Glycyrrhiza uralensis. Heterocycles 31:373 (1990).

    Article  CAS  Google Scholar 

  31. Fukai T.; Nomura T. NMR spectra of isoprenoid substituted phenols. 3._Structure of 6-or 8-isoprenoid substituted flavanone: chemical shift of the hydrogen-bonded hydroxyl group. Heterocycles 31:1861 (1990).

    Article  CAS  Google Scholar 

  32. Fukai T.; Nomura T. NMR spectra of isoprenoid substituted phenols. 9._Variations in the chemical shift of the 5-hydroxyl proton of 7-O-prenylated flavanones. Heterocycles 43:1361 (1996).

    Article  CAS  Google Scholar 

  33. Bohlmann F.; Zdero C.; Robinson H.; King R.M. Naturally occurring terpene derivatives. 357._A diterpene, a sesquiterpene quinone and flavanones from Wyethia helenioides. Phytochemistry 20:2245 (1981).

    Article  CAS  Google Scholar 

  34. Wu L.-J.; Miyase T.; Ueno A.; Kuroyanagi M.; Noro T.; Fukushima S. Studies on the constituents of Sophora flavescens. 2._Chem. Pharm. Bull. 33:3231 (1985).

    CAS  Google Scholar 

  35. Iinuma M.; Yokoyama J.; Ohyama M.; Tanaka T.; Mizuno M.; Ruangrungsi N. Seven phenolic compounds in the roots of Sophora exigua. Phytochemistry 33:203 (1993).

    Article  CAS  Google Scholar 

  36. Fukai, T.; Pei, Y.-H.; Nomura, T.; Xu, C.-Q.; Wu, L.-J.; Chen, Y.-J. Constituents of Moraceous plants. 29._Components of the root bark of Morus cathayana. 2._Isoprenylated flavanones from Morus cathayana. Phytochemistry 47:273 (1998).

    Article  CAS  Google Scholar 

  37. Fukai T.; Nomura T. NMR spectra of isoprenoid substituted phenols. 4._Revised structures of albanins D and E, geranylated flavones from Morus alba. Heterocycles 32:499 (1991).

    Article  CAS  Google Scholar 

  38. Fukai T.; Nomura T. NMR spectra of isoprenoid substituted phenols. 5._1H-NMR chemical shift of the flavonol 5-hydroxy proton as a characterization of 6-or 8-isoprenoid substitution. Heterocycles 34:1213 (1992).

    Article  CAS  Google Scholar 

  39. Feigl, F. Spot tests in inorganic analysis, 5th ed. (Engl. trans. by Oesper, R.E.), Elsevier, Amsterdam, p. 182 (1958).

    Google Scholar 

  40. Tahara S.; Ingham J.L.; Hanawa F.; Mizutani J. 1H NMR chemical shift value of the isoflavone 5-hydroxyl proton as a convenient indicator of 6-substitution or 2′-hydroxylation. Phytochemistry 30:1683 (1991).

    Article  CAS  Google Scholar 

  41. Fukai T.; Tantai L.; Nomura T. NMR spectra of isoprenoid substituted phenols. 8._1H NMR chemical shift of the isoflavanone 5-hydroxyl proton as a characterization of 6-or 8-prenyl group. Heterocycles 37:1819 (1994).

    Article  CAS  Google Scholar 

  42. Hano Y.; Matsumoto Y.; Sun J.-Y; Nomura T. Constituents of the Moraceae plants. 1._Components of root bark of Cudrania tricuspidata. 4._Structures of three new isoprenylated xanthones, cudraxanthones E, F, and G. Planta Med. 56:399 (1990).

    Article  PubMed  CAS  Google Scholar 

  43. Ishiguro K.; Nakajima M.; Fukumoto H.; Isoi K. Xanthones in cell suspension cultures of Hypericum patulum. 3._A xanthone substituted with an irregular monoterpene in cell suspension cultures of Hypericum patulum. Phytochemistry 39:903 (1995).

    Article  CAS  Google Scholar 

  44. Hano, Y.; Okamoto, T.; Nomura, T.; Momose, Y Constituents of the Moraceae plants. 11._Components of the root bark of Morus insignis BUR. 1._Structures of four new isoprenylated xanthones, morusignins A, B, C, and D. Heterocycles 31:1345 (1990).

    Article  CAS  Google Scholar 

  45. Seo E.-K.; Silva G.L.; Chai H.-B.; Chagwedera T.E.; Farnsworth N.R.; Cordell G.A.; Pezzuto J.M.; Kinghorn A.D. Cytotoxic prenylated flavanones from Monotes engleri. Phytochemistry 45:509 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. Takasugi, M.; Ishikawa, S.; Masamune, T.; Shirata, A.; Takahashi, K. Anti-bacterial compounds in the branch bark of mulberry tree. 42nd Annual Meeting of the Chemical Society of Japan, Abstract Paper, Sendai, p. 352 (1980).

    Google Scholar 

  47. Shirata, A.; Takahashi, K.; Takasugi, M.; Nagao, S.; Ishikawa, S.; Ueno, S.; Muñoz, L.; Masamune, T. Antimicrobial spectra of the compounds from mulberry tree (in Japanese). Sanshi Shikenjo Hokoku (Bull. Sercul. Exp. Sta.) 28:793 (1983).

    CAS  Google Scholar 

  48. Ferrari F.; Messana I.; Do Carmo Mesquita de Araujo M. Constituents of Brosimopsis oblongifolia. 2._Structures of three new flavones, brosimones G, H, and I form Brosimopsis oblongifolia. Planta Med. 55:70 (1989).

    Article  PubMed  CAS  Google Scholar 

  49. Ferrari F.; Nomura T. Letter to editor. Planta Med. 58:116 (1992).

    Google Scholar 

  50. Mitscher L.A.; Raghavrao G.S.; Khanna I.; Veysoglu T.; Drake S. Antimicrobial agents from higher plants: prenylated flavonoids and other phenols from Glycyrrhiza lepidota. Phytochemistry 22:573 (1983).

    Article  CAS  Google Scholar 

  51. Souza M.P.; Machado M.I.L.; Braz-Filho R. Six flavonoids from Bursera leptophloeos. Phytochemistry 28:2467 (1989).

    Article  CAS  Google Scholar 

  52. Kumar N.S.; Pavanasasivam G.; Sultanbawa U.S.; Mageswaran R. Chemical investigation of Ceylonese plants. 24._New chromenoflavonoids from the bark of Artocarpus nobilis Thw. (Moraceae). J. Chem. Soc. Perkin Trans. 1:1243 (1977).

    Article  Google Scholar 

  53. Fukai T.; Nomura T. NMR spectra of isoprenoid substituted phenols. 6._1H NMR spectra of prenylated flavonoids and pyranoflavonoids. Heterocycles 36:329 (1993).

    Article  CAS  Google Scholar 

  54. Hano Y.; Yamagami Y.; Kobayashi M.; Isohata R.; Nomura T. Constituents of the Moraceae plants. 8._Artonins E and F, two new prenylflavones from the bark of Artocarpus communis Forst. Heterocycles 31:877 (1990).

    Article  CAS  Google Scholar 

  55. Fujimoto Y.; Zhang X.-X.; Kirisawa M.; Uzawa J.; Sumatra M. New flavones from Artocarpus communis Forst. Chem. Pharm. Bull. 38:1787 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Fukai, T., Nomura, T. (1999). New NMR Structure Determination Methods for Prenylated Phenols. In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics