Advertisement

Evolutionary Genetics of Primate Color Vision

Recent Progress and Potential Limits to Knowledge
  • Wen-Hsiung Li
  • Stephane Boissinot
  • Ying Tan
  • Song-Kun Shyue
  • David Hewett-Emmett
Part of the Evolutionary Biology book series (EBIO, volume 32)

Abstract

Color vision has intrigued philosophers and scientists since Plato. It is truly a multidisciplinary subject involving physics, psychology, neuroscience, ophthalmology, genetics, evolution, molecular Biology, biochemistry, and so forth. While past progress was made mainly from studies in physics, psychology, and vision science, recent progress has been mainly due to the advent of molecular and biochemical techniques such as gene cloning, DNA sequencing, site-directed mutagenesis, and biochemical assays of pigment proteins. Thanks to new techniques and traditional means, we now have a much better knowledge of the various genetic systems of color vision in primates, the origins and evolution of these systems, and the critical amino acid residues responsible for spectral sensitivity differences among primate photopigments. These topics will be reviewed in this chapter. In addition, we shall discuss the role of natural selection in the evolution of primate color vision systems and also how gene conversion has greatly complicated the inference of the evolutionary history of the systems. We intend to show that primate color vision provides an excellent example of how misconceptions in a subject can be corrected and dramatic progress made by developing new approaches or collecting new data.

Keywords

Gene Conversion Color Vision Howler Monkey Opsin Gene Gene Conversion Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asenjo, A. B., Rim, J., and Oprian, D. D., 1994, Molecular determinants of human red/green color discrimination, Neuron 12:1131–1138.PubMedCrossRefGoogle Scholar
  2. Balding, D. J., Nichols, R. A., and Hunt, D. M., 1992, Detecting gene conversion: Primate visual pigment genes, Proc. R. Soc. London B 249:275–280.CrossRefGoogle Scholar
  3. Blakeslee, B., and Jacobs, G. H., 1985, Color vision in the ring-tailed lemur (Lemur catta), Brain Behav. Evol. 26:154–166.PubMedCrossRefGoogle Scholar
  4. Boissinot, S., Zhou, Y.-H., Qiu, L., Dulai, K. S., Neiswanger, K., Schneider, H., Sampaio, I., Hunt, D. M., Hewett-Emmett, D., and Li, W.-H., 1997, Origin and molecular evolution of the X-linked duplicate color vision genes in howler monkeys, Zool. Stud. 36:360–369.Google Scholar
  5. Boissinot, S., Tan, Y., Shyue, S.-K., Schneider, H., Sampaio, I., Neiswanger, K., Hewett-Emmett, D., and Li, W.-H., 1998, Origin and antiquity of the X-linked triallelic color vision systems in New World monkeys, Proc. Natl. Acad. Sci. USA 95:13749–13754.PubMedCrossRefGoogle Scholar
  6. Deeb, S. S., Lindsey, D. T., Hibiya, Y., Sanocki, E., Winderickx, J., Teller, D. Y., and Motulsky, A. G., 1992, Genotype-phenotype relationships in human red/green color vision defects: molecular and psychophysical studies, Am. J. Hum. Genet. 51:678–700.Google Scholar
  7. Deeb, S. S., Jorgensen, A. L., Battist, L., Iwasaki, L., and Motulsky, A. G., 1994, Sequence divergence of the red and green visual pigments in great apes and humans, Proc. Natl. Acad. Sci. USA 91:7262–7266.PubMedCrossRefGoogle Scholar
  8. Deegan II, J. F., and Jacobs, G. H., 1996, Spectral sensitivity and photopigment of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatus), Am. J. Primatol. 40:55–66.CrossRefGoogle Scholar
  9. Dodt, E., 1967, Purkinje shift in the rod eye of the bush baby, Galago crassicaudatus, Vision Res. 7:509–517.CrossRefGoogle Scholar
  10. Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., Gunnell, G., and Groves, G P., 1998, Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence, Mol. Phyl. Evol. 9:585–598.CrossRefGoogle Scholar
  11. Hunt, D., Dulai, K. S., Cowing, J. A., Julliot, G., Mollon, J. D., Bowmaker, J. K., Li, W.-H., and Hewett-Emmett, D., 1998, Molecular evolution of trichromacy in primates, Vision Res. 38:3299–3306.PubMedCrossRefGoogle Scholar
  12. Ibbotson, R., Hunt, D. M., Bowmaker, J. K., and Mollon, J. D., 1992, Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys, Proc. Roy. Soc. Lond. B 247:145–154.CrossRefGoogle Scholar
  13. Jacobs, G. H., 1984, Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): Color vision, Vision Res. 24:1267–1277.PubMedCrossRefGoogle Scholar
  14. Jacobs, G. H., 1993, The distribution and nature of color vision among the mammals, Biol. Rev. 68:413–471.PubMedCrossRefGoogle Scholar
  15. Jacobs, G. H., 1996, Primate photopigments and primate color vision, Proc. Natl. Acad. Sci. USA 93:577–581.PubMedCrossRefGoogle Scholar
  16. Jacobs, G. H., and Deegan II, J. F., 1993, Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus), Am. J. Primatol. 30:243–256.CrossRefGoogle Scholar
  17. Jacobs, G. H., and Neitz, J., 1987, Inheritance of color vision in a New World monkey (Saimiri sciureus), Proc. Natl. Acad. Sci. USA 84:2545–2549.PubMedCrossRefGoogle Scholar
  18. Jacobs, G. H., Neitz, J., and Neitz, M., 1993, Genetic basis of polymorphism in the color vision of platyrrhine monkeys, Vision Res. 33:269–274.PubMedCrossRefGoogle Scholar
  19. Jacobs, G. H., Neitz, M., Deegan, J. F., and Neitz, J., 1996a, Trichromatic colour vision in New World monkeys, Nature 382:156–158.PubMedCrossRefGoogle Scholar
  20. Jacobs, G. H., Neitz, M., and Neitz, J., 1996b, Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate, Proc. R. Soc. Lond. B 263:705–710.CrossRefGoogle Scholar
  21. Kimura, M., 1980, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16:111–120.PubMedCrossRefGoogle Scholar

Evolutionary Genetics of Primate Color Vision

  1. Kimura, M., and Ohta, T., 1969, The average number of generations until extinction of an individual mutant gene in a finite population, Genetics 63:701–709.PubMedGoogle Scholar
  2. Klein, J., Takahata, N., and Ayala, F. J., 1993, MHC polymorphism and human origins, Sci. Am. 269:78–83.PubMedCrossRefGoogle Scholar
  3. Li, W.-H., 1993, Unbiased estimation of the rates of synonymous and nonsynonymous substitution, J. Mol. Evol. 36:96–99.PubMedCrossRefGoogle Scholar
  4. Li, W.-H., 1997, Molecular Evolution, Sinauer, Sunderland, Massachusetts.Google Scholar
  5. Maynard Smith, J., 1992, Analyzing the mosaic structure of genes, J. Mol Evol. 34:126–129.Google Scholar
  6. Merbs, S. L., and Nathans, J., 1992, Absorption spectra of human cone pigments, Nature 356:433–435.PubMedCrossRefGoogle Scholar
  7. Merbs, S. L., and Nathans, J., 1993, Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments, Photochem. Photobiol. 58:706–710.PubMedCrossRefGoogle Scholar
  8. Mervis, R. F., 1974, Evidence of color vision in a diurnal prosimian, Lemur catta, Anim. Learn. Behav. 2:238–240.CrossRefGoogle Scholar
  9. Mollon, J. D., Bowmaker, J. K., and Jacobs, G. H., 1984, Variations of colour vision in a New World primate can be explained by a polymorphism of retinal photopigments, Proc. Roy. Soc. Lond. B 222:373–399.CrossRefGoogle Scholar
  10. Nathans, J., Thomas, D., and Hogness, D. S., 1986a, Molecular genetics of human color vision: The genes encoding blue, green, and red pigments, Science 232:193–202.CrossRefGoogle Scholar
  11. Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., and Hogness, D. S., 1986b, Molecular genetics of inherited variation in human color vision, Science 232:203–210.CrossRefGoogle Scholar
  12. Nei, M., Zhang, J., and Yokoyama, S., 1997, Color vision of ancestral organisms of higher primates, Mol. Biol. Evol. 14:611–618.PubMedCrossRefGoogle Scholar
  13. Neitz, M., Neitz, J., and Jacobs, G. H., 1991, Spectral tuning of pigments underlying red-green color vision, Science 252:911–914.CrossRefGoogle Scholar
  14. Ordy, J. M., and Samorajski, T., 1968, Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates, Vision Res. 8:1205–1225.PubMedCrossRefGoogle Scholar
  15. Petry, H. M., and Harosi, F. I., 1990, Visual pigments of the tree shrew (Tupaia belangen) and greater, galago (Galago crassicaudatus): A microspectrophotometric investigation, Vision Res. 30:839–851.PubMedCrossRefGoogle Scholar
  16. Reyniers, E., Van Thienen, M.-N., Meire, F., De Boulle, K., Devries, K., Kestelijn, P., and Willems, P. J., 1995, Gene conversion between red and defective green opsin gene in blue cone monochromacy, Genomics 29:323–328.PubMedCrossRefGoogle Scholar
  17. Saitou, N., and Nei, M., 1987, The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4:406–425.PubMedGoogle Scholar
  18. Schneider, H., Schneider, M. P. C., Sampaio, I., Harada, M. L., Stanhope, M., Czelusniak, J., and Goodman, M., 1993, Molecular phylogeny of the New World monkeys (Platyrrhini, primate), Mol. Phyl. Evol. 2:225–242.CrossRefGoogle Scholar
  19. Schneider, H., Sampaio, I., Harada, M. L., Barroso, C. M. L., Schneider, M. P. C., Czelusniak, J., and Goodman, M., 1996, Molecular phylogeny of the New World monkeys (Platyrrhini Primates) based on two unlinked nuclear genes: IRBP intron 1 and E-globin sequences, Am. J. Phyl. Anthrop. 100:153–179.CrossRefGoogle Scholar
  20. Shyue, S.-K., Li, L., Chang, B. H.-J., and Li, W.-H., 1994, Intronic gene conversion in the evolution of human X-linked color vision genes, Mol. Biol. Evol. 11:548–551.PubMedGoogle Scholar
  21. Shyue, S.-K., Hewett-Emmett, D., Sperling, H. C., Hunt, D. M., Bowmaker, J. K., Mollon, J. D., and Li, W.-H., 1995, Adaptive evolution of pigment genes in higher primates, Science 269:1265–1267.PubMedCrossRefGoogle Scholar
  22. Shyue, S.-K., Boissinot, S., Schneider, H., Sampaio, L, Schneider, M. P., Abee, C. R., William, L., Hewett-Emmett, D., Sperling, H. C., Cowing, J. A., Dulai, K. S., Hunt, D. M., and Li, W.-H., 1998, Molecular genetics of spectral tuning in New World monkey color vision, J. Mol. Evol. 46:697–702.PubMedCrossRefGoogle Scholar
  23. Spofford, J. B., 1972, A heterotic model for the evolution of duplications, Brookhaven Symp. Biol. 23:121–143.PubMedGoogle Scholar
  24. Sun, H., Macke, K. P., and Nathan, J., 1997, Mechanisms of spectral tuning in mouse green cone pigment, Proc. Natl. Acad. Sci. USA 94:8860–8865.PubMedCrossRefGoogle Scholar
  25. Takahata, N., and Nei, M., 1990, Allelic geneology under overdominant and frequency-dependent selection and polymorphism of major histocompatibility compex loci, Genetics 124:967–978.PubMedGoogle Scholar
  26. Travis, D. S., Bowmaker, J. K., and Mollon, J. D., 1988, Polymorphism of visual pigment in a callitrichid monkey, Vision Res. 28:481–490.PubMedCrossRefGoogle Scholar
  27. Wikler, K. C., and Rakie, P., 1990, Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates, J. Neurosa. 10:3390–3401.Google Scholar
  28. Winderickx, J., Battisti, L., Motulsky, A. G., and Deeb, S. S., 1992, Selective expression of human X chromosome-linked green opsin genes, Proc. Natl. Acad. Sci. USA 89:9710–9714.PubMedCrossRefGoogle Scholar
  29. Winderickx, J., Battisti, L., Hibiya, Y., Motulsky, A. C., and Deeb, S. S., 1993, Haplotype diversity in the human red and green opsin genes: Evidence for frequent sequence exchange in exon 3, Hum. Mol Genet. 2:1413–1421.PubMedCrossRefGoogle Scholar
  30. Yokoyama, R., and Yokoyama, S., 1990, Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human, Proc. Natl. Acad. Sci. USA 87:9315–9318.PubMedCrossRefGoogle Scholar
  31. Yokoyama, S., and Radlwimmer, F. B., 1998, The “five-sites” rule and the evolution of red and green color vision in mammals, Mol. Biol. Evol. 15:560–567.PubMedCrossRefGoogle Scholar
  32. Zhao, Z., Hewett-Emmett, D., and Li, W.-H., 1998, Frequent gene conversion between human red and green opsin genes, J. Mol. Evol. 46:494–496.Google Scholar
  33. Zhou, Y.-H., and Li, W.-H., 1996, Gene conversion and natural selection in the evolution of X-linked color vision in higher primates, Mol. Biol. Evol. 13:780–783.PubMedCrossRefGoogle Scholar
  34. Zhou, Y.-H., Hewett-Emmett, D., Ward, J. P., and Li, W.-H., 1997, Unexpected conservation of the X-linked color vision gene in nocturnal prosimians: evidence from two bush babies, J. Mol Evol. 45:610–618.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Wen-Hsiung Li
    • 1
  • Stephane Boissinot
    • 2
  • Ying Tan
    • 3
  • Song-Kun Shyue
    • 4
  • David Hewett-Emmett
    • 3
  1. 1.Department of Ecology and EvolutionUniversity of ChicagoChicagoUSA
  2. 2.Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  3. 3.Human Genetics CenterUniversity of TexasHoustonUSA
  4. 4.Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations