Advertisement

Avoiding Paradigm-Based Limits to Knowledge of Evolution

  • Ward B. Watt
Part of the Evolutionary Biology book series (EBIO, volume 32)

Abstract

Since Darwin (1859) first proposed that evolution proceeds by natural selection, we have learned much about it. The founding of population genetic theory (summaries: Fisher, 1958; Haldane, 1932; Wright, 1931) showed the genetic feasibility of natural selection, removing a major objection to Darwin’s theory (Provine, 1971), and led to extended study of population genetic phenomena (e.g., Nei, 1987; Hartl and Clark, 1989). The “Modern Synthesis” (Jepsen et al., 1949; Mayr and Provine, 1980) brought paleontology and systematics together with population genetics to endorse Darwin’s insights and, many thought, to lay the foundation of steady progress in understanding.

Keywords

Natural Selection Genetic Program Modern Synthesis Insect Wing Regular Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akashi, H., 1995, Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA, Genetics 139:1067–1076.PubMedGoogle Scholar
  2. Akashi, H., and Schaeffer, S. W., 1997, Natural selection and the frequency distributions of “silent” DNA polymorphism in Drosophila, Genetics 146:295–307.PubMedGoogle Scholar
  3. Antonovics, J., 1987,The evolutionary dys-synthesis: Which bottles for which wine? Am. Natur. 129:321–331.Google Scholar
  4. Averoff, M., and Cohen, S. M., 1997, Evolutionary origin of insect wings from ancestral gills, Nature 385:627–630.Google Scholar
  5. Brandon, R. N., 1990, Adaptation and Environment, Princeton University Press, Princeton, New Jersey.Google Scholar
  6. Bulmer, M., 1988, Are codon usage patterns in unicellular organisms determined by mutation-selection balance? J. Evol. Biol. 1:15–26.Google Scholar
  7. Cain, A. J., and Provine, W., 1992, Genes and ecology in history, in: Genes in Ecology (R. J. Berry, T. J. Crawford, and G. M. Hewitt, eds.), pp. 3–28, Blackwell Scientific Publications, Oxford, England.Google Scholar
  8. Calder, W. A., 1984, Size, Function, and Life History, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  9. Clark, A. G., and Koehn, R. K., 1992, Enzymes and adaptation, in: Genes in Ecology (R. J. Berry, T. J. Crawford, and G. M. Hewitt, eds.), pp. 193–228, Blackwell Scientific Publications, Oxford, England.Google Scholar
  10. Crawford, D. L., and Powers, D. A., 1989, Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus, Proc. Natl Acad. Sci. USA 86:9365–9369.Google Scholar
  11. Darwin, C., 1859, The Origin of Species, 6th ed., rev., 1872. New American Library, New York.Google Scholar
  12. Dobzhansky, Th., 1973, Nothing in Biology makes sense except in the light of evolution, Amer. Biol. Teacher 35:125–129.Google Scholar
  13. Eanes, W. F., 1999, Analysis of selection on enzyme polymorphisms. Annu. Rev. Ecol. Syst. 30:301–326.Google Scholar
  14. Endler, J. A., 1986, Natural Selection in the Wild, Princeton University Press, Princeton, New Jersey.Google Scholar
  15. Ewens, W., and Feldman, M. W., 1976, The theoretical assessment of selective neutrality, in: Population Genetics and Ecology (S. Karlin and E. Nevo, eds.), pp. 303–337, Academic Press, New York.Google Scholar
  16. Feder, M. E., and Watt, W. B., 1992, Functional Biology of adaptation, in: Genes in Ecology (R. J. Berry, T. J. Crawford, and G M. Hewitt, eds.), pp. 365–392, Blackwell Scientific Publications, Oxford, England.Google Scholar
  17. Feder, M. E., Blair, N., and Figueras, H., 1997, Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae, Funct. Ecol. 11:90–100.Google Scholar
  18. Felsenstein, J., 1985, Phylogenies and the comparative method, Am. Natur. 125:1–15.Google Scholar
  19. Fisher, R. A., 1958, The Genetical Theory of Natural Selection, 2nd ed., rev., Dover, New York.Google Scholar
  20. Gershwin, I., 1935, Libretto to George Gershwin, Porgy and Bess.Google Scholar
  21. Gillespie, J. H., 1991, The Causes of Molecular Evolution, Oxford University Press, Oxford, England.Google Scholar
  22. Gillespie, J. H., 1994, Substitution processes in molecular evolution, II. Exchangeable models from population genetics, Evolution 48:1101–1113.Google Scholar
  23. Golding, G. B. (ed.), 1994, Non-neutral Evolution, Chapman & Hall, New York.Google Scholar
  24. Golding, G. B., and Dean, A. M., 1998, The structural basis of molecular adaptation, Mol. Biol. Evol. 15:355–369.PubMedGoogle Scholar
  25. Gould, S. J., 1980a, Is a new and general theory of evolution emerging? Paleobiology 6:119–130.Google Scholar
  26. Gould, S. J., 1980b, The evolutionary Biology of constraint, Daedalus 109:39–52.Google Scholar
  27. Gould, S. J., 1989, A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution, Evolution 43:516–539.Google Scholar
  28. Gould, S. J., and Lewontin, R. C., 1979, The spandrels of San Marco and the Panglossian paradigm, Proc. Roy. Soc. Lond. B 205:581–598.Google Scholar
  29. Gould, S. J., and Vrba, E. S., 1982, Exaptation—A missing term in the science of form, Paleobiology 8:4–15.Google Scholar
  30. Haldane, J. B. S., 1932, The Causes of Evolution, Longmans, London.Google Scholar
  31. Hartl, D. L., and Clark, A. C., 1989, Principles of Population Genetics, 2nd ed., Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  32. Harvey, P. H., and Pagel, M. D., 1991, The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford, England.Google Scholar
  33. Hennig, W., 1966, Phylogenetic Systematics, University of Illinois Press, Urbana, Illinois.Google Scholar
  34. Hickman, C. S., 1988, Analysis of form and function in fossils, Am. Zool. 28:775–793.Google Scholar
  35. Hillis, D. M., Moritz, C., and Mable, B. K. (eds.), 1996, Molecular Systematics, 2nd ed., Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  36. Jacobs, M. D., and Watt, W. B., 1994, Seasonal adaptation vs physiological constraint: Photoperiod, thermoregulation, and flight in Colias butterflies, Func. Ecol. 8:366–376.Google Scholar
  37. Jepsen, G. L., Simpson, G. G., and Mayr, E. (eds.), 1949, Genetics, Palaeontology, and Evolution, Princeton University Press, Princeton, New Jersey.Google Scholar
  38. Judson, H. F., 1996, The Eighth Day of Creation, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York.Google Scholar
  39. Kacser, H., and Burns, J. A., 1979, Molecular democracy: Who shares the controls? Biochem. Soc. Trans. 7:1149–1160.PubMedGoogle Scholar
  40. Kacser, H., and Burns, J. A., 1981, The molecular basis of dominance, Genetics 97:639–666.PubMedGoogle Scholar
  41. Karlin, S., and Feldman, M. W., 1970, Linkage and selection: Two-locus symmetric viability model, Theor. Pop. Biol. 1:39–71.Google Scholar
  42. Kettlewell, H. B. D., 1955, Selection experiments on industrial melanism in the Lepidoptera, Heredity 9:323–342.Google Scholar
  43. Kingsolver, J. G., and Watt, W. B., 1984, Mechanistic constraints and optimality models: Thermoregulatory strategies in Colias butterflies, Ecology 65:1835–1839.Google Scholar
  44. Krebs, R. A., and Feder, M. E., 1997, Natural variation in the expression of the heat-shock protein hsp70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress, Evolution 50:173–179.Google Scholar
  45. Kuhn, T. S., 1970, The Structure of Scientific Revolutions, 2nd ed., University of Chicago Press, Chicago.Google Scholar
  46. Lande, R., 1983, The response to selection on major and minor mutations affecting a metrical trait, Heredity 50:47–65.Google Scholar
  47. Lande, R., and Arnold, S. J., 1983, The measurement of selection on correlated characters, Evolution 37:1210–1226.Google Scholar
  48. Lenski, R. E., and Travisano, M., 1994, Dynamics of adaptation and diversification: A 10,000-generation experiment with bacterial populations, Proc. Natl. Acad. Sci. USA 91:6808–6814.PubMedGoogle Scholar
  49. Lerner, I. M., 1954, Genetic Homeostasis, Oliver & Boyd, Edinburgh, England.Google Scholar
  50. Levins, R., 1965, Genetic consequences of natural selection, in: Theoretical and Mathematical Biology (T. H. Waterman and H. J. Morowitz, eds.), pp. 371–387, Blaisdell, New York.Google Scholar
  51. Lloyd, E. A., 1994, The Structure and Confirmation of Evolutionary Theory, 2nd ed., Princeton University Press, Princeton, New Jersey.Google Scholar
  52. Losos, J. B., Jackmann, T. R., Larson, A., de Queiroz, K., and Rodriguez-Schettino, L., 1998, Contingency and determinism in replicated adaptive radiations of island lizards, Science 279:2115–2118.PubMedGoogle Scholar
  53. MacArthur, R. H., 1965, Ecological consequences of natural selection, in: Theoretical and Mathematical Biology (T H. Waterman and H. J. Morowitz, eds.), pp. 388–397, Blaisdell, New York.Google Scholar
  54. Mackay, T. F. C., 1995, The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system, Trends Genet. 11:464–470.PubMedGoogle Scholar
  55. Mayr, E., 1958, Change of genetic environment and evolution, in: Evolution as a Process (J. Huxley, A. C. Hardy, and E. B. Ford, eds.), 2nd ed., pp. 188–213, Allen & Unwin, London.Google Scholar
  56. Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  57. Mayr, E., 1980, Some thoughts on the history of the evolutionary synthesis, in: The Evolutionary Synthesis (E. Mayr and W. B. Provine, eds.), pp. 1–48, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  58. Mayr, E., 1988, Toward a New Philosophy of Biology, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  59. Mayr, E., and Ashlock, P. D., 1969, Principles of Systematic Zoology, 2nd ed., McGraw-Hill, New York, New York.Google Scholar
  60. Mayr, E., and Provine, W. B. (eds.), 1980, The Evolutionary Synthesis, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  61. Michener, C. D., and Sokal, R. R., 1957, A quantitative approach to a problem in classification, Evolution 11:130–162.Google Scholar
  62. Milkman, R. D., 1961, The genetic basis of natural variation. III. Developmental lability and evolutionary potential, Genetics 46:25–38.PubMedGoogle Scholar
  63. Milkman, R. D., 1965, The genetic basis of natural variation. VII. The individuality of polygenic combinations in Drosophila, Genetics 52:789–799.PubMedGoogle Scholar
  64. Mitton, J. B., 1997, Selection in Natural Populations, Oxford University Press, New York.Google Scholar
  65. Mongold, J. A., and Lenski, R. E., 1996, Experimental rejection of a nonadaptive explanation for increased cell size in Escherichia coli, J. Bact. 178:5333–5334.PubMedGoogle Scholar
  66. Monod, J., Changeux, J.-P., and Jacob, F., 1963, Allosteric proteins and cellular control systems, J. Mol Biol. 6:306–309.PubMedGoogle Scholar
  67. Morowitz, H. J., 1978, Foundations of Bioenergetics, Academic Press, New York.Google Scholar
  68. Nei, M., 1987, Molecular Evolutionary Genetics, Columbia University Press, New York.Google Scholar
  69. Nielsen, M. G., and Watt, W. B., 1998, Behavioral fitness components in the “alba” polymorphism of Colias (Lepidoptera, Pieridae): Adult time budget analysis, Func. Ecol. 12:149–158.Google Scholar
  70. O’Donald, P., 1971, Natural selection for quantitative characters, Heredity 27:137–153.PubMedGoogle Scholar
  71. Orr, H. A., and Coyne, J. A., 1992, The genetics of adaptation: a reassessment, Am. Natur. 140:725–742.PubMedGoogle Scholar
  72. Osborne, K. A., Robichon, A., Burgess, E., Butland, S., Shaw, R. A., Coulthard, A., Pereira, H. S., Greenspan, R. J., and Sokolowski, M. B., 1997, Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila, Science 277:834–836.PubMedGoogle Scholar
  73. Parker, G. A., and Maynard Smith, J., 1990, Optimality theory in evolutionary Biology, Nature 348:27–33.Google Scholar
  74. Perkins, D. D., and Turner, B. C., 1988, Neurospora from natural populations: Toward the population Biology of a haploid eukaryote, Exp. Mycol. 12:91–131.Google Scholar
  75. Piatt, J. R., 1964, Strong inference, Science 146:347–353.Google Scholar
  76. Popper, K. R., 1994, The Myth of the Framework, Routledge, London.Google Scholar
  77. Powell, J. R., 1997, Progress and Prospects in Evolutionary Biology: The Drosophila Model, Oxford University Press, Oxford, England.Google Scholar
  78. Powers, D. A., Lauerman, T., Crawford, D., and DiMichele, L., 1991, Genetic mechanisms for adapting to a changing environment, Annu. Rev. Genet. 25:629–659.PubMedGoogle Scholar
  79. Provine, W. B., 1971, The Origins of Theoretical Population Genetics, University of Chicago Press, Chicago.Google Scholar
  80. Quastler, H., 1964, The Emergence of biological Organization, Yale University Press, New Haven, Connecticut.Google Scholar
  81. Quastler, H., 1965, General principles of systems analysis, in: Theoretical and Mathematical Biology (T. H. Waterman and H. J. Morowitz, eds.), pp. 313–333, Blaisdell, New York.Google Scholar
  82. Real, L. A. (ed.), 1994, Ecological Genetics, Princeton University Press, Princeton, New Jersey.Google Scholar
  83. Reeve, H. K., and Sherman, P. W., 1993, Adaptation and the goals of evolutionary research, Q. Rev. Biol. 68:1–32.Google Scholar
  84. Ridley, M., 1986, Evolution and Classification, Longman’s, Harlow, England.Google Scholar
  85. Robertson, A., 1968, The spectrum of genetic variation, in: Population Biology and Evolution (R. C. Lewontin, ed.), pp. 5–16, Syracuse University Press, Syracuse, New York.Google Scholar
  86. Rose, M. R., and Lauder, G. V. (eds.), 1996a, Adaptation, Academic Press, New York.Google Scholar
  87. Rose, M. R., and Lauder, G. V., 1996b, Post-spandrel adaptationism, in: Adaptation (M. R. Rose and G. V. Lauder, eds.), pp. 1–8, Academic Press, New York.Google Scholar
  88. Rothman, E., and Templeton, A. M., 1980, A class of models of selectively neutral alleles, Theor. Pop. Biol. 18:135–150.Google Scholar
  89. Savageau, M. A., and Sorribas, A., 1989, Constraints among molecular and systemic properties: implications for physiological genetics, J. Theor. Biol. 141:93–115.PubMedGoogle Scholar
  90. Simpson, G. G., 1949, The Meaning of Evolution, Yale University Press, New Haven, Connecticut.Google Scholar
  91. Skibinski, D. O. R, Woodwark, M., and Ward, R. D., 1993, A quantitative test of the neutral theory using pooled allozyme data, Genetics 135:233–248.PubMedGoogle Scholar
  92. Suppe, F., 1977, Afterword, in: The Structure of Scientific Theories (F. Suppe, ed.), pp. 617–730, University of Illinois Press, Urbana, Illinois.Google Scholar
  93. Travis, G. D. L., and Collins, H. M., 1991, New light on old boys: Cognitive and institutional particularism in the peer review system, Sci. Tech. Hum. Values 16:322–341.Google Scholar
  94. Travisano, M., and Lenski, R. E., 1996, Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation, Genetics 143:15–26.PubMedGoogle Scholar
  95. Tuomi, J., 1981, Structure and dynamics of Darwinian evolutionary theory, Syst. Zool. 30:22–31.Google Scholar
  96. Wagner, G. P., and Altenberg, L., 1996, Complex adaptations and the evolution of evolvability, Evolution 50:967–976.Google Scholar
  97. Watt, W B., 1968, Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation, Evolution 22:437–458.Google Scholar
  98. Watt, W. B., 1985a, Bioenergetics and evolutionary genetics—Opportunities for new synthesis, Am. Natur. 125:118–143.Google Scholar
  99. Watt, W. B., 1985b, Allelic isozymes and the mechanistic study of evolution, Isozymes: Curr. Top. Biol. Med. Res. 12:89–132.Google Scholar
  100. Watt, W. B., 1986, Power and efficiency as fitness indices in metabolic organization, Am. Natur. 127:629–653.Google Scholar
  101. Watt, W. B., 1992, Eggs, enzymes, and evolution—Natural genetic variants change insect fecundity, Proc. Natl. Acad. Sci. USA 89:10608–10612.PubMedGoogle Scholar
  102. Watt, W. B., 1994, Allozymes in evolutionary genetics: self-imposed burden or extraordinary tool? Genetics 136:11–16.PubMedGoogle Scholar
  103. Watt, W B., 1995, Allozymes in evolutionary genetics: beyond the twin pitfalls of “neutralism” and “selectionism,” Rev. Suisse de Zoologie 102:869–882.Google Scholar
  104. Watt, W. B., Carter, P. A., and Blower, S. M., 1985, Adaptation at specific loci. IV Differential mating success among glycolytic allozyme genotypes of Colias butterflies, Genetics 109:157–175.PubMedGoogle Scholar
  105. West, G. B., Brown, J. H., and Enquist, B. J., 1997, A general model for the origin of allometric scaling laws in Biology, Science 276:122–126.PubMedGoogle Scholar
  106. Whittington, H. B., 1985, The Burgess Shale, Yale University Press, New Haven, Connecticut.Google Scholar
  107. Whorf, B. L., 1956, Language, Thought, and Reality (X B. Carroll, ed.), MIT Press, Cambridge, Massachusetts.Google Scholar
  108. Wright, S., 1931, Evolution in Mendelian populations, Genetics 6:97–159.Google Scholar
  109. Wright, S., 1934, Physiological and evolutionary theories of dominance, Am. Natur. 34:24–53.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Ward B. Watt
    • 1
    • 2
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA
  2. 2.Rocky Mountain Biological LaboratoryCrested ButteUSA

Personalised recommendations