Skip to main content

Fermentation in Reptiles and Amphibians

  • Chapter

Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

As ectotherms, amphibians and reptiles do not have to support the metabolic expense of endothermy and are characterized by low rates of energy flow and high efficiencies of biomass conversion, relative to birds and mammals (Pough 1983). The low energy requirements of amphibians and reptiles have important ramifications for digestive processing and, in herbivorous species, for the level of energy that must be generated by fermentations in the gastrointestinal tract.

Keywords

  • Green Turtle
  • Anuran Tadpole
  • Freshwater Turtle
  • Cell Wall Digestibility
  • Plant Diet

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-4111-0_7
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4615-4111-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, TR (1964) Observations on the feeding behavior of Bufo marinus (Linne). Herpetologica 20: 255–259.

    Google Scholar 

  • Altig R, Kelly JP (1974) Indices of feeding in anuran tadpoles as indicated by gut characteristics. Herpetologica 30: 200–203.

    Google Scholar 

  • Altig R, Kelly JP, Wells M, Phillips J (1975) Digestive enzymes of seven species of anuran tadpoles. Herpetologica 31: 104–108.

    Google Scholar 

  • Altig R, McDearman W (1975) Percent assimilation and clearance times of five anuran tadpoles. Herpetologica 31: 67–69.

    Google Scholar 

  • Andrews SP (1984) Aspects of fibre digestion in Cunningham’s skink, Egernia cunninghami. Unpublished thesis, University of New England, Armidale, Australia.

    Google Scholar 

  • Babak E (1903) Ueber den Einfluss der Nahrung auf die Lange des Darmkanals. Biol Zentr 22: 477–483, 519-528.

    Google Scholar 

  • Babak E (1906) Ueber die morphogenetische Reaktion des Dannkanals des Froschlarvae auf Muskelprotein verschiedener Tierklassen. Beitr Chem Physiol Pathol 7: 323–330.

    Google Scholar 

  • Baer DJ (1992) Effects of diet composition and ambient temperature on digestive function and bioenergetics of the green iguana (Iguana iguana). Ph.D. dissertation, Michigan State University, East Lansing.

    Google Scholar 

  • Balazs GH (1980) Synopsis of biological data on the green turtle in the Hawaiian Islands. NOAA Tech Memo NOAA-TM-NMFS-SWFC-7.

    Google Scholar 

  • Beebee TJC (1991) Purification of an agent causing growth inhibition in anuran larvae and its identification as a unicellular unpigmented alga. Can J Zool 69: 2146–2153.

    Google Scholar 

  • Beebee TJC, Wong ALC (1992) Prototheca-mediated interference competition between anuran larvae operates by resource diversion. Physiol Zool 65: 815–831.

    Google Scholar 

  • Bjorndal KA (1979) Cellulose digestion and volatile fatty acid production in the green turtle, Chelonia mydas. Comp Biochem Physiol 63A: 127–133.

    CAS  Google Scholar 

  • Bjorndal KA (1980) Nutrition and grazing behavior of the green turtle Chelonia mydas. Mar Biol 56: 147–154.

    CAS  Google Scholar 

  • Bjorndal KA (1982) The consequences of herbivory for the life history pattern of the Caribbean green turtle, Chelonia mydas. In: Bjorndal KA, ed. Biology and Conservation of Sea Turtles, pp. 111–116. Washington: Smithsonian Institution Press.

    Google Scholar 

  • Bjorndal KA (1985a) Nutritional ecology of sea turtles. Copeia 1985: 736–751.

    Google Scholar 

  • Bjorndal KA (1985b) Use of ash as an indigestible dietary marker. Bull Mar Sci 36: 224–230.

    Google Scholar 

  • Bjorndal KA (1987) Digestive efficiency in a temperate herbivorous reptile, Gopherus polyphemus. Copeia 1987: 714–720.

    Google Scholar 

  • Bjorndal KA (1989) Flexibility of digestive responses in two generalist herbivores, the tortoises Geochelone carbonaria and Geochelone denticulata. Oecologia 78: 317–321.

    Google Scholar 

  • Bjorndal KA (1991) Diet mixing: nonadditive interactions of diet items in an omnivorous freshwater turtle. Ecology 72: 1234–1241.

    Google Scholar 

  • Bjorndal KA, Bolten AB (1990) Digestive processing in a herbivorous freshwater turtle: consequences of small-intestine fermentation. Physiol Zool 63: 1232–1247.

    Google Scholar 

  • Bjorndal KA, Bolten AB, Moore JE (1990) Digestive fermentation in herbivores: effect of food particle size. Physiol Zool 63: 710–721.

    Google Scholar 

  • Bjorndal KA, Bolten AB (1992) Body size and digestive efficiency in a herbivorous freshwater turtle: advantages of small bite size. Physiol Zool 65: 1028–1039.

    Google Scholar 

  • Bjorndal KA, Bolten AB (1993) Digestive efficiencies in herbivorous and omnivorous freshwater turtles on plant diets: do herbivores have a nutritional advantage? Physiol Zool 66: 384–395.

    Google Scholar 

  • Bjorndal KA, Suganuma H, Bolten AB (1991) Digestive fermentation in green turtles, Chelonia mydas, feeding on algae. Bull Mar Sci 48: 166–171.

    Google Scholar 

  • Bonneville MA (1963) Fine structural changes in the intestinal epithelium of the bullfrog during metamorphosis. J Cell Biol 18: 579–597.

    PubMed  CAS  Google Scholar 

  • Burggren WW, Just JJ (1992) Developmental changes in physiological systems. In: Feder ME, Burggren WW, eds. Environmental Physiology of the Amphibians, pp. 467–530. Chicago: University of Chicago Press.

    Google Scholar 

  • Carroll EJ Jr, Seneviratne AM, Ruibal R (1991) Gastric pepsin in an anuran larva. Dev Growth Differ 33: 499–507.

    CAS  Google Scholar 

  • Christian KA (1986) Physiological consequences of nighttime temperature for a tropical, herbivorous lizard (Cyclura nubila). Can J Zool 64: 836–840.

    Google Scholar 

  • Christian KA, Tracy CR, Porter WP (1984) Diet, digestion, and food preferences of Galapagos land iguanas. Herpetologica 40: 205–212.

    Google Scholar 

  • Costa HH, Balasubramanian S (1965) The food of the tadpoles of Rhacophorus cruciger (Blyth). Ceylon J Sci 5: 105–109.

    Google Scholar 

  • Das I, Coe M (1994) Dental morphology and diet in anuran amphibians from south India. J Zool 233: 417–427.

    Google Scholar 

  • Da Silva HR, De Britto-Pereira MC, Caramaschi U (1989) Frugivory and seed dispersal by Hyla truncata, a neotropical treefrog. Copeia 1989: 781–783.

    Google Scholar 

  • Dauca M, Hourdry J (1985) Transformations in the intestinal epithelium during anuran metamorphosis. In: Balls M, Bownes M, eds. Metamorphosis: The Eighth Symposium of the British Society for Developmental Biology, pp. 36–58. Oxford: Clarendon Press.

    Google Scholar 

  • Dawson TJ (1989) Food utilization in relation to gut structure and function in wild and domestic birds and mammals. Acta Vet Scand Suppl 86: 20–27.

    PubMed  CAS  Google Scholar 

  • Dawson TJ, Johns A, Beal AM (1989) Digestion in the Australian wood duck (Chenonetta jubata): a small avian herbivore showing selective digestion of the hemicellulose component of fiber. Physiol Zool 62: 522–540.

    CAS  Google Scholar 

  • Dearing MD (1993) An alimentary specialization for herbivory in the tropical whiptail lizard, Cnemidophorus murinus. J Herpetol 27: 111–114.

    Google Scholar 

  • Dodd MHI, Dodd JM (1976) The biology of metamorphosis. In: Lofts B, ed. Physiology of the Amphibia, pp. 467–599. New York: Academic Press.

    Google Scholar 

  • Dubuis AL, Faurel L, Grenot C, Vernet R (1971) Sur le regime alimentaire du lezard saharien Uromastyx acanthinurus Bell. C R Acad Sci (Paris) Ser D 273: 500–503.

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of Amphibians. New York: McGraw-Hill

    Google Scholar 

  • E1-Toubi MR, Bishai UM (1959) On the anatomy and histology of the alimentary tract of the lizard Uromastyx aegyptia (Forskal). Bull Fac Sci Cairo Univ 34: 13–50.

    Google Scholar 

  • Farlowe V (1928) Algae of ponds as determined by an examination of the intestinal contents of tadpoles. Biol Bull 55: 443–448.

    Google Scholar 

  • Fialho RF (1990) Seed dispersal by a lizard and a treefrog — effect of dispersal site on seed survivorship. Biotropica 22: 423–424.

    Google Scholar 

  • Foley WJ, Bouskila A, Shkolnik A, Choshniak I (1992) Microbial digestion in the herbivorous lizard Uromastyx aegyptius (Agamidae). J Zool Lond 226: 387–398.

    Google Scholar 

  • Fox H (1981) Cytological and morphological changes during amphibian metamorphosis. In: Gilbert LI, Frieden E, eds. Metamorphosis: A Problem in Developmental Biology 2nd ed, pp. 327–362. New York: Plenum Press.

    Google Scholar 

  • Fox H (1984) Amphibian Morphogenesis. Clifton, NJ: Bioscience, Humana Press.

    Google Scholar 

  • Gasaway WC (1976a) Seasonal variation in diet, volatile fatty acid production and size of the cecum of rock ptarmigan. Comp Biochem Physiol 53A: 109–114.

    Google Scholar 

  • Gasaway WC (1976b) Volatile fatty acids and metabolizable energy derived from cecal fermentation in the willow ptarmigan. Comp Biochem Physiol 53A: 115–121.

    Google Scholar 

  • Greene HW (1982) Dietary and phenotypic diversity in lizards: why are some organisms specialized? In: Mossakowski D, Roth G, eds. Environmental Adaptation and Evolution, pp. 107–128. Stuttgart: Gustav Fischer.

    Google Scholar 

  • Griffiths I (1961) The form and function of the fore-gut in anuran larvae (amphibia, salientia) with particular reference to the manicotto glandulare. Proc Zool Soc Lond 137: 249–283.

    Google Scholar 

  • Guard CL (1980) The reptilian digestive system: general characteristics. In: Schmidt-Nielsen K, Bolis L, Taylor CR, Bentley PJ, Stevens CE, eds. Comparative Physiology: Primitive Mammals, pp. 43–51. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hamilton J, Coe M (1982) Feeding, digestion and assimilation of a population of giant tortoises (Geochelone gigantea (Schweigger)) on Aldabra atoll. J Arid Environ 5: 127–144.

    Google Scholar 

  • Harlow HJ, Hillman SS, Hoffman M (1976) The effect of temperature on digestive efficiency in the herbivorous lizard, Dipsosaurus dorsalis. J Comp Physiol 111: 1–6.

    Google Scholar 

  • Herd RM, Dawson TJ (1984) Fiber digestion in the emu, Dromaius novaehollandiae, a large bird with simple gut and a high rate of passage. Physiol Zool 57: 70–84.

    Google Scholar 

  • Hird DW, Diesch SL, McKinnell RG, et al. (1981) Aeromonas hydrophila in wild-caught frogs and tadpoles (Rana pipiens) in Minnesota. Lab Anim Sci 31: 166–169.

    PubMed  CAS  Google Scholar 

  • Hird DW, Diesch SL, McKinnell RG, et al. (1983) Enterobacteriaceae and Aeromonas hydrophila in Minnesota frogs and tadpoles (Rana pipiens). Appl Environ Microbiol 46: 1423–1425.

    PubMed  CAS  Google Scholar 

  • Hotton N III (1955) A survey of adaptive relationships of dentition to diet in the North American Iguanidae. Am Midl Nat 53: 88–114.

    Google Scholar 

  • Hukuhara T, Naitoh T, Kameyama H (1975) Observations on the gastrointestinal movements of the tortoise (Geoclemys reevesii) by means of the abdominal-window-technique. Jpn J Smooth Muscle Res 11: 39–46.

    CAS  Google Scholar 

  • Iverson JB (1980) Colic modifications in iguanine lizards. J Morphol 163: 79–93.

    Google Scholar 

  • Iverson JB (1982) Adaptations to herbivory in Iguanine lizards. In: Burghardt GM, Rand AA, eds. Iguanas of the World: Their Behavior, Ecology and Conservation, pp. 60–76. Park Ridge, NJ: Noyes Publications.

    Google Scholar 

  • Janis C (1976) The evolutionary strategy of the equidae and the origins of rumen and cecal digestion. Evolution 30: 757–774.

    Google Scholar 

  • Jenssen TA (1967) Food habits of the green frog, Rana clamitans, before and during metamorphosis. Copeia 1967: 214–218.

    Google Scholar 

  • Justice KE, Smith FA (1992) A model of dietary fiber utilization by small mammalian herbivores, with empirical results for Neotoma. Am Nat 139: 398–416.

    Google Scholar 

  • Karasov WH, Petrossian E, Rosenberg L, Diamond JA (1986) How do food passage rate and assimilation differ between herbivorous lizards and nonruminant mammals? J Comp Physiol B 156: 599–609.

    PubMed  CAS  Google Scholar 

  • Kuntz A (1924) Anatomical and physiological changes in the digestive system during metamorphosis in Rana pipiens and Amblystoma tigrinum. J Morphol 38: 581–598.

    Google Scholar 

  • Lonnberg E (1902) On some points of relation between the morphological structure of the intestine and the diet of reptiles. Bihang Till K Svenska Vet-Akad Handlingar Band 28 Afd IV (No. 8): 3–53.

    Google Scholar 

  • Marian MP (1982) Ecophysiological studies in frog culture (Rana tigrina Daud). Ph.D. thesis, Madurai Kamaraj University, Madurai, India.

    Google Scholar 

  • Marken Lichtenbelt WD (1992) Digestion in an ectothermic herbivore, the green iguana (Iguana iguana): effect of food composition and body temperature. Physiol Zool 65: 649–673.

    Google Scholar 

  • Mautz WJ, Nagy KA (1987) Ontogenetic changes in diet, field metabolic rate, and water flux in the herbivorous lizard Dipsosaurus dorsalis. Physiol Zool 60: 640–658.

    Google Scholar 

  • McBee RH (1989) Hindgut fermentation in nonavian species. J Exp Zool Suppl 3: 55–60.

    PubMed  CAS  Google Scholar 

  • McBee RH, McBee VH (1982) The hindgut fermentation in the green iguana, Iguana iguana. In: Burghardt GM, Rand AA, eds. Iguanas of the World: Their Behavior, Ecology and Conservation, pp. 77–83. Park Ridge, NJ: Noyes Publications.

    Google Scholar 

  • Meienberger C, Wallis IR, Nagy KA (1993) Food intake rate and body mass influence transit time and digestibility in the desert tortoise (Xerobates agassizii). Physiol Zool 66: 847–862.

    Google Scholar 

  • Michel de Cerasuolo A, Teran HR (1991) Aspectos histoquimicos del tracto digestivo larval de Gastrotheca gracilis Laurent, en relacion con la alimentacion. Acta Zool Lilloana 40: 69–81.

    Google Scholar 

  • Montanucci RR (1968) Comparative dentition in four iguanid lizards. Herpetologica 24: 305–315.

    Google Scholar 

  • Mortimer JA (1982) Feeding ecology of sea turtles. In: Bjorndal KA, ed. Biology and Conservation of Sea Turtles, pp. 103–109. Washington: Smithsonian Institution Press.

    Google Scholar 

  • Nagy KA (1977) Cellulose digestion and nutrient assimilation in Sauromalus obesus, a plant eating lizard. Copeia 1977: 355–362.

    Google Scholar 

  • Nagy KA (1982) Energy requirements of free-living iguanid lizards. In: Burghardt GM, Rand AA, eds. Iguanas of the World: Their Behavior, Ecology and Conservation, pp. 49–59. Park Ridge, NJ: Noyes Publications.

    Google Scholar 

  • Nagy KA, Medica PA (1986) Physiological ecology of desert tortoises in southern Nevada. Herpetologica 42: 73–92.

    Google Scholar 

  • Nagy KA, Shoemaker VH (1975) Energy and nitrogen budgets of the free-living desert lizard Sauromalus obesus. Physiol Zool 48: 252–262.

    Google Scholar 

  • Nathan JM, James VG (1972) The role of protozoa in the nutrition of tadpoles. Copeia 1972: 669–679.

    Google Scholar 

  • Noble GK (1931) The Biology of the Amphibia. New York: McGraw-Hill.

    Google Scholar 

  • Norman DB, Weishampel DB (1985) Ornithopod feeding mechanisms: their bearing on the evolution of herbivory. Am Nat 126: 151–164.

    Google Scholar 

  • Parra R (1978) Comparison of foregut and hindgut fermentation in herbivores. In: Montgomery GG, ed. The Ecology of Arboreal Folivores, pp. 205–229. Washington: Smithsonian Institution Press.

    Google Scholar 

  • Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129: 69–96.

    CAS  Google Scholar 

  • Petranka JW (1989) Chemical interference competition in tadpoles: does it occur outside laboratory aquaria? Copeia 1989: 921–930.

    Google Scholar 

  • Pough FH (1973) Lizard energetics and diet. Ecology 54: 837–844.

    Google Scholar 

  • Pough FH (1983) Amphibians and reptiles as low-energy systems. In: Aspey WP, Lustick SI, eds. Behavioral Energetics, pp. 141–188. Columbus: Ohio State University Press.

    Google Scholar 

  • Ray CE (1965) Variation in the number of marginal tooth positions in three species of iguanid lizards. Breviora 236: 1–15.

    Google Scholar 

  • Reeder WG (1964) The digestive system. In: Moore JA, ed. Physiology of the Amphibia, pp. 99–149. New York: Academic Press.

    Google Scholar 

  • Richards CM (1958) The inhibition of growth in crowded Rana pipiens tadpoles. Physiol Zool 31: 138–151.

    Google Scholar 

  • Richards CM (1962) The control of tadpole growth by alga-like cells. Physiol Zool 35: 285–296.

    Google Scholar 

  • Rose SM, Rose FC (1961) Growth-controlling exudates of tadpoles. Symp Soc Exp Biol 15: 207–218.

    CAS  Google Scholar 

  • Ruibal R, Thomas E (1988) The obligate carnivorous larvae of the frog, Lepidobatrachus laevis (Leptodactylidae). Copeia 1988: 591–604.

    Google Scholar 

  • Ruppert RM (1980) Comparative assimilation efficiencies of two lizards. Comp Biochem Physiol 67A: 491–496.

    Google Scholar 

  • Savage RM (1952) Ecological, physiological and anatomical observations on some species of anuran tadpoles. Proc Zool Soc Lond 122: 467–514.

    Google Scholar 

  • Savage RM (1961) The Ecology and Life History of the Common Frog (Rana temporaria temporaria). London: Sir Isaac Pitman & Sons.

    Google Scholar 

  • Schad GA, Knowles R, Meerovitch E (1964) The occurrence of Lampropedia in the intestines of some reptiles and nematodes. Can J Microbiol 10: 801–804.

    PubMed  CAS  Google Scholar 

  • Seale DB (1980) Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 61: 1531–1550.

    Google Scholar 

  • Seale DB (1987) Amphibia. In: Pandian TJ, Vernberg FJ, eds. Animal Energetics, Vol. 2, pp. 467–552. Bivalvia Through Reptilia, San Diego: Academic Press.

    Google Scholar 

  • Seale DB, Beckvar N (1980) The comparative ability of anuran larvae (genera: Hyla, Bufo and Rana) to ingest suspended blue-green algae. Copeia 1980: 495–503.

    Google Scholar 

  • Sekar AG (1992) A study of the food habits of six anuran tadpoles. J Bombay Nat Hist Soc 89: 9–16.

    Google Scholar 

  • Smith HW (1965) Observations on the flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol 89: 95–122.

    PubMed  CAS  Google Scholar 

  • Sokol OM (1967) Herbivory in lizards. Evolution 21: 192–194.

    Google Scholar 

  • Steinwascher K (1978) Interference and exploitation competition among tadpoles of Rana utricularia. Ecology 59: 1039–1046.

    Google Scholar 

  • Steinwascher K (1979) Host-parasite interaction as a potential population-regulating mechanism. Ecology 60: 884–890.

    Google Scholar 

  • Stevens CE (1988) Comparative Physiology of the Vertebrate Digestive System. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stevens CE (1989) Evolution of vertebrate herbivores. Acta Vet Scand Suppl 86: 9–19.

    PubMed  CAS  Google Scholar 

  • Szarski H (1962) Some remarks on herbivorous lizards. Evolution 16: 529.

    Google Scholar 

  • Thayer GW, Engel DW, Bjorndal KA (1982) Evidence for short-circuiting of the detritus cycle of seagrass beds by the green turtle, Chelonia mydas L. J Exp Mar Biol Ecol 62: 173–183.

    Google Scholar 

  • Thompson SM (1980) A comparative study of the anatomy and histology of the oral cavity and alimentary canal of two sea turtles: the herbivorous green turtle Chelonia mydas and the carnivorous loggerhead turtle Caretta caretta (includes discussion of diet and digestive physiology). M.S. thesis, James Cook University, North Queensland, Townsville, Australia.

    Google Scholar 

  • Throckmorton GS (1976) Oral food processing in two herbivorous lizards, Iguana iguana (Iguanidae) and Uromastix aegyptius (Agamidae). J Morphol 148: 363–390.

    PubMed  CAS  Google Scholar 

  • Throckmorton GS (1980) The chewing cycle in the herbivorous lizard Uromastix aegyptius (Agamidae). Arch Oral Biol 25: 225–233.

    PubMed  CAS  Google Scholar 

  • Toloza EM, Diamond JM (1990a) Ontogenetic development of nutrient transporters in bullfrog intestine. Am J Physiol 258: G760–G769.

    PubMed  CAS  Google Scholar 

  • Toloza EM, Diamond JM (1990b) Ontogenetic development of transporter regulation in bullfrog intestine. Am J Physiol 258: G770–G773.

    PubMed  CAS  Google Scholar 

  • Troyer K (1982) Transfer of fermentative microbes between generations in a herbivorous lizard. Science 216: 540–542.

    PubMed  CAS  Google Scholar 

  • Troyer K (1984a) Structure and function of the digestive tract of a herbivorous lizard Iguana iguana. Physiol Zool 57: 1–8.

    Google Scholar 

  • Troyer K (1984b) Behavioral acquisition of the hindgut fermentation system by hatchling Iguana iguana. Behav Ecol Sociobiol 14: 189–193.

    Google Scholar 

  • Troyer K (1984c) Microbes, herbivory and the evolution of social behavior. J Theor Biol 106: 157–169.

    Google Scholar 

  • Troyer K (1984d) Diet selection and digestion in Iguana iguana: the importance of age and nutrient requirements. Oecologia 61: 201–207.

    Google Scholar 

  • Troyer K (1987) Small differences in daytime body temperature affect digestion of natural food in a herbivorous lizard (Iguana iguana). Comp Biochem Physiol 87A: 633–636.

    Google Scholar 

  • Troyer K (1988) Morphological specializations for herbivory in small lizards: the genus Liolaemus. Am Zool 28: 197A.

    Google Scholar 

  • Troyer K (1991) Role of microbial cellulose degradation in reptile nutrition. In: Haigler CH, Weimer PJ, eds. Biosynthesis and Biodegradation of Cellulose, pp. 311–325. New York: Marcel Dekker.

    Google Scholar 

  • Ueck M (1967) Der Manicotto glandulare (Drusenmagen) der Anuranlarvae in Bau, Funktion and Beziehung zure Gesamtlange des Darmes. Sonderdruck Zeit Wissen Zool 176: 173–270.

    Google Scholar 

  • Ultsch, GR (1973) Observations on the life history of Siren lacertina. Herpetologica 29: 304–305.

    Google Scholar 

  • Van Soest PJ (1982) Nutritional Ecology of the Ruminant. Corvallis, OR: O & B Books.

    Google Scholar 

  • Voorhees ME (1981) Digestive efficiency of Sauromalus varius. M.S. thesis, Colorado State University, Fort Collins.

    Google Scholar 

  • Wagner WE (1986) Tadpoles and pollen: observations on the feeding behavior of Hyla regilla larvae. Copeia 1986: 802–804.

    Google Scholar 

  • Waldschmidt SR, Jones SM, Porter WP (1987) Reptilia. In: Pandian TJ, Vernberg FJ, eds. Animal Energetics, Vol. 2, pp. 553–619. Bivalvia Through Reptilia. San Diego: Academic Press.

    Google Scholar 

  • Warner ACI (1981) Rate of passage through the gut of mammals and birds. Nutr Abstr Rev 51B: 789–820.

    Google Scholar 

  • Wassersug R (1972) The mechanism of ultraplanktonic entrapment in anuran larvae. J Morphol 137: 279–288.

    Google Scholar 

  • Wassersug RJ, Heyer R (1988) A survey of internal oral features of leptodactyloid larvae (Amphibia: Anura). Smithson Contrib Zool 457: 1–99.

    Google Scholar 

  • West LB (1960) The nature of growth inhibitory material from crowded Rana pipiens tadpoles. Physiol Zool 33: 232–239.

    Google Scholar 

  • Wikelski M, Gall B, Trillmich F (1993) Ontogenetic changes in food intake and digestion rate of the herbivorous marine iguana (Amblyrhynchus cristatus). Oecologia 94: 373–379.

    Google Scholar 

  • Wilhoft DC (1958) Observations on preferred body temperature and feeding habits of some selected tropical iguanas. Herpetologica 14: 161–164.

    Google Scholar 

  • Zar JH (1984) Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Zimmerman LC, Tracy CR (1989) Interactions between the environment and ectothermy and herbivory in reptiles. Physiol Zool 62: 374–409.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bjorndal, K.A. (1997). Fermentation in Reptiles and Amphibians. In: Mackie, R.I., White, B.A. (eds) Gastrointestinal Microbiology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4111-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4111-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6843-4

  • Online ISBN: 978-1-4615-4111-0

  • eBook Packages: Springer Book Archive