Skip to main content

Biosynthesis of Nitrogen-Containing Compounds

  • Chapter
Gastrointestinal Microbiology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Nitrogen is essential for growth in all biological systems, and its assimilation into a variety of life-sustaining compounds has been the topic of study for many microbiologists. This chapter focuses on ammonia assimilation and the biosynthesis of amino acids, polyamines, pyrimidines, and purines. Wherever possible, emphasis will be directed toward findings obtained from ruminai and colonic bacteria, although the knowledge base developed for these bacteria is relatively superficial. To overcome these limitations, some discussion pertaining to gramnegative enteric bacteria (Escherichia coli, Salmonella typhimurium [official designation, Salmonella enterica, serovar typhimurium], and Klebsiella spp.) and gram-positive bacteria (Bacillus subtilis and Clostridium spp.) has been included for the sake of clarity and reference. Readers interested in detailed information concerning the topics covered in this chapter, as well as the biosynthesis of nitrogen-containing vitamins and coenzymes, should refer to the volumes edited by Neidhardt et al. (1996) and Sonenshein et al. (1993), as well as the recent review of nitrogen control in bacteria by Merrick and Edwards (1995). The goals of this chapter are to provide a cohesive overview that complements the well-chronicled field of knowledge developed from these intensively studied species, and to highlight opportunities where further studies of ruminai and colonie bacteria may expand our understanding of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abratt VR, Zappe H, Woods DR (1993) A reporter gene to investigate the regulation of glutamine synthetase in Bacteroides fragilis Bf1. J Gen Microbiol 139: 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Allison MJ (1965) Phenylalanine biosynthesis from phenylacetic acid by anaerobic bacteria from the rumen. Biochem Biophys Res Commun 18: 30–35.

    Article  PubMed  CAS  Google Scholar 

  • Allison MJ (1969) Biosynthesis of amino acids by ruminai microorganisms. J Anim Sci 29: 797–807.

    PubMed  CAS  Google Scholar 

  • Allison MJ, Peel JL (1971) The biosynthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola. Biochem J 121: 431–437.

    PubMed  CAS  Google Scholar 

  • Allison MJ, Robinson IM, Baetz AL (1979) Synthesis of α-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonas, and Bacteroides species. J Bacteriol 140: 980–986.

    PubMed  CAS  Google Scholar 

  • Allison MJ, Baetz AL, Wiegel J (1984) Alternative pathways for the biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Appl Environ Microbiol 48: 1111–1117.

    PubMed  CAS  Google Scholar 

  • Allison MJ, Robinson IM (1967) Tryptophan biosynthesis from indole-3-acetic acid by anaerobic bacteria from the rumen. Biochem J 102: 36–37.

    Google Scholar 

  • Allison MJ, Robinson IM (1970) Biosynthesis of α-ketoglutarate by the reductive carboxylation of succinate in Bacteroides ruminicola. J Bacteriol 104: 50–56.

    PubMed  CAS  Google Scholar 

  • Almassy RJ, Janson CA, Hamlin R, Xuong NH, Eisenberg D (1986) Novel subunit-subunit interactions in the structure of glutamine synthetase. Nature 323: 304–309.

    Article  PubMed  CAS  Google Scholar 

  • Anderson DB, Winter LD (1982) Glutamine and proline accumulation by Staphylococcus aureus with reduction in water activity. J Bacteriol 143: 1501–1503.

    Google Scholar 

  • Baggio L, Morrison M (1996) The NAD(P)H-dependent glutamate dehydrogenase of Bacteroides thetaiotaomicron belongs to enzyme family I, and its activity is affected by trans-acting gene(s) positioned downstream of gdhA. J Bacteriol. 178: in press.

    Google Scholar 

  • Barak Z, Chipman DM, Gollop N (1987) Physiological implications of the specificity of acetohydroxyacid synthase isozymes of enteric bacteria. J Bacteriol 169: 3750–3756.

    PubMed  CAS  Google Scholar 

  • Barnes EM Jr, Jayakumar A (1993) NH4 + transport systems in Escherichia coli. In: Bakker EP, ed. Alkali Cation Transport Systems in Prokaryotes, pp. 397–409. Boca Raton, Fla: CRC Press.

    Google Scholar 

  • Benachenhou-Lahfa N, Forterre P, Labedan B (1993) Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol 36: 335–346.

    Article  PubMed  CAS  Google Scholar 

  • Bender RA, Janssen KA, Resnick AD, Blumberg M, Foor F, Magasanik B (1977) Biochemical parameters of the glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129: 1001–1009.

    PubMed  CAS  Google Scholar 

  • Bender RA, Snyder PM, Bueno R, Quinto M, Magasanik B (1983) Nitrogen regulation system of Klebsiella aerogenes: the nac gene. J Bacteriol 156: 444–446.

    PubMed  CAS  Google Scholar 

  • Bender RA (1991) The role of the NAC protein in the nitrogen regulation of Klebsiella aerogenes. Mol Microbiol 5: 2575–2580.

    Article  PubMed  CAS  Google Scholar 

  • Blake JS, Salter DN, Smith RH (1983) Incorporation of nitrogen into rumen bacterial fractions of steers given protein-and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids. Br J Nutr 50: 769–782.

    Article  PubMed  CAS  Google Scholar 

  • Bohannon D, Rosenkrantz MS, Sonenshein AL (1985) Regulation of Bacillus subtilis glutamate synthase genes by the nitrogen source. J Bacteriol 163: 957–964.

    PubMed  CAS  Google Scholar 

  • Boniface AN, Murray RM, Hogan JP (1986) Optimum level of ammonia in the rumen liquor of cattle fed a tropical grass hay. Proc Aust Soc Anim Prod 16: 151–154.

    Google Scholar 

  • Botsford JL, Alvarez M, Hernandez R, Nichols R (1994) Accumulation of glutamate by Samonella typhimurium in response to osmotic stress. Appl Environ Microbiol 60: 2568–2574.

    PubMed  CAS  Google Scholar 

  • Buchanan BB (1969) Role of ferredoxin in the synthesis of α-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and nonphotosynthetic bacteria. J Biol Chem 244: 4218–4223.

    PubMed  CAS  Google Scholar 

  • Burchall JJ, Reichelt EC, Wolin MJ (1964) Purification and properties of the asparagine synthetase of Streptococcus bovis. J Biol Chem 239: 1794–1798.

    PubMed  CAS  Google Scholar 

  • Byng GS, Kane JF, Jensen RA (1982) Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. Crit Rev Microbiol 9: 227–252.

    Article  PubMed  CAS  Google Scholar 

  • Castano I, Flores N, Valle F, Covarrubias AA, Bolivar F (1992) glt F, a member of the glt BDF operon of Escherichia coli, is involved in nitrogen-regulated gene expression. Mol Microbiol 6: 2733–2741.

    Article  PubMed  CAS  Google Scholar 

  • Castroph H, Kleiner D (1984) Some properties of a Klebsiella pneumoniae ammonium transport negative mutant (Amt). Arch Microbiol 139: 245–247.

    Article  Google Scholar 

  • Chalupa W, Clark J, Opliger P, Larker R (1970) Ammonia metabolism in rumen bacteria and mucosa from sheep fed soy protein or urea. J Nutr 100: 161–169.

    PubMed  CAS  Google Scholar 

  • Chen T (1995) Molecular cloning, nucleotide sequence analysis, and expression of a gene encoding NADH-dependent glutamate dehydrogenase activity from Bacteroides thetaiotaomicrom. MS Thesis, University of Nebraska-Lincoln.

    Google Scholar 

  • Cohen PP, Sallach HJ (1961) Nitrogen metabolism of amino acid. In: Greenberg DM, ed. Metabolic Pathways, Vol. II, pp. 1–66. New York: Academic Press.

    Google Scholar 

  • Cotta MJ, Russell JB (1982) Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. J Dairy Sci 65: 226–234.

    Article  CAS  Google Scholar 

  • Coulton JW, Kapoor M (1973a) Studies on the kinetics and regulation of glutamate dehydrogenase of Salmonella typhimurium. Can J Microbiol 19: 427–438.

    Article  PubMed  CAS  Google Scholar 

  • Coulton JW, Kapoor M (1973b) Studies on the kinetics and regulation of glutamate dehydrogenase of Salmonella typhimurium. Can J Microbiol 19: 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Csonka LN, Epstein W (1996) Osmoregulation. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1210–1224. Washington, DC: American Society for Microbiolology.

    Google Scholar 

  • Dailey FE, Cronan JE Jr (1986) Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source. J Bacteriol 165: 453–460.

    PubMed  CAS  Google Scholar 

  • Dailey FE, Cronan JE Jr, Maloy SR (1987) Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids. J Bacteriol 169: 917–919.

    PubMed  CAS  Google Scholar 

  • Dainty RH, Peel JL (1970) Biosynthesis of amino acids in Clostridium pasteurianum. J Biochem 117: 573–584.

    CAS  Google Scholar 

  • Davenport HW (1982) Physiology of the Digestive Tract, 5th Ed. Chicago: Yearbook.

    Google Scholar 

  • Deshpande KL, Katze JR, Kane JF (1980) Regulation of glutamate synthase from Bacillus subtilis by glutamine. Biochem Biophys Res Commun 95: 55–60.

    Article  Google Scholar 

  • Duncan PA, White BA, Mackie RI (1992) Purification and properties of NADP-dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD-1. Appl Environ Microbiol 58: 4032–4037.

    PubMed  CAS  Google Scholar 

  • Ebbole DJ, Zalkin H (1987) Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem 262: 8274–8287.

    PubMed  CAS  Google Scholar 

  • Ebbole DJ, Zalkin H (1989) Interaction of a putative repressor protein with an extended control region of the Bacillus subtilis pur operon. J Biol Chem 264: 3553–3561.

    PubMed  CAS  Google Scholar 

  • Eikmanns B, Jaenchen R, Thauer RK (1983a) Propionate assimilation by methanogenic bacteria. Arch Microbiol 136: 106–110.

    Article  CAS  Google Scholar 

  • Eikmanns B, Linder D, Thauer RK (1983b) Unusual pathway of isoleucine biosynthesis in Methanobacterium thermoautotrophicum. Arch Microbiol 136: 111–113.

    Article  CAS  Google Scholar 

  • Erfle JD, Sauer FD, Mahadevan S (1977) Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J Dairy Sci 60: 1064–1072.

    Article  PubMed  CAS  Google Scholar 

  • Ernsting, BR, Denninger JW, Blumenthal RM, Matthews RG (1993) Regulation of gltBDF operon of Escherichia colt how is a leucine-insenstive operon regulated by the leucineresponsive regulatory protein? J Bacteriol 175: 7160–7169.

    PubMed  CAS  Google Scholar 

  • Fink PS (1993) Biosynthesis of branch chained amino acids. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and Other Gram-Positive Bacteria, pp. 307–318. Washington DC: American Society for Microbiology.

    Google Scholar 

  • Fisher SH, Sonenshein AL (1991) Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu Rev Microbiol 45: 107–135.

    Article  PubMed  CAS  Google Scholar 

  • Garciarubbio A, Lozoya E, Covarubbias A, Bolivar F (1983) Structural organization of genes that encode two glutamate synthase subunits of Escherichia coli. Gene 26: 165–170.

    Article  Google Scholar 

  • Gibson SAW, Macfarlane GT (1988) Studies on the proteolytic activity of Bacteroides fragilis. J Gen Microbiol 134: 19–27.

    PubMed  CAS  Google Scholar 

  • Ginsburg A, Stadtman ER (1973) Regulation of glutamine synthetase in Escherichia coli. In: Prusiner S, Stadtman ER, eds. The Enzymes of Glutamine Metabolism, pp. 9–44. New York: Academic Press.

    Google Scholar 

  • Glansdorff N (1987) Biosynthesis of arginine and polyamines. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 321–344. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Glansdorff N (1996) Biosynthesis of arginine and polyamines. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 408–433. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Glass TL, Hylemon PB (1980) Characterization of a pyridine nucleotide-nonspecific glutamate dehydrogenase from Bacteroides thetaiotaomicron. J Bacteriol 141: 1320–1330.

    PubMed  CAS  Google Scholar 

  • Gots JS, Benson CE, Jochimsen B, Koduri KR (1977) Microbial models and regulatory elements in the control of purine metabolism. CIBA Found Symp 48: 23–41.

    PubMed  CAS  Google Scholar 

  • Gottschalk G (1986) Biosynthesis of amino acids. In: Bacterial Metabolism, 2nd Ed., pp. 43–55. Berlin: Springer-Verlemyer Press.

    Chapter  Google Scholar 

  • Goss TJ, Bender RA (1995) The nitrogen assimilation control protein NAC is a DNA binding transcription activator in Klebsiella aerogenes. J Bacteriol 177: 3546–3555.

    PubMed  CAS  Google Scholar 

  • Grandoni AA, Switzer RL, Makaroff CA, Zalkin H (1989) Evidence that the iron sulfate cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines the stability of the enzyme to inactivation in vivo. J Biol Chem 264: 6058–6064.

    PubMed  CAS  Google Scholar 

  • Greene RC (1996) Biosynthesis of methioinine. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 542–560. Washington DC: American Society for Microbiology.

    Google Scholar 

  • Griffith CJ, Carlsson J (1974) Mechanism of ammonia assimilation in Strepococci. J Gen Microbiol 82: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Martindale DW, Lee BH (1992) Isolation and complete sequence of the purL gene encoding FGAM synthase II in Lactobacillus casei. Gene 119: 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Microbiol 18: 261–283.

    CAS  Google Scholar 

  • Hamana K, Akiba T, Uchino F, Matsuzaki S (1989) Distribution of spermine in bacilli and lactic acid bacteria. Can J Microbiol 35: 450–455.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton PT, Reeve JN (1985a) Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii. Mol Gen Genet 200: 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton PT, Reeve JN (1985b) Sequence divergence of an archaebacterial gene cloned from a mesophilic and a thermophilic methanogen. J Mol Evol 22: 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Henner D, Yanofsky C (1993) Biosynthesis of aromatic amino acids. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and Other Gram-Positive Bacteria, pp. 269–280. Washington DC: American Society for Microbiology.

    Google Scholar 

  • He B, Shiau A, Choi, KY, Zalkin H, Smith JM (1990) Genes of the Escherichia coli purR negatively controlled by a repressor operator interaction. J Bacteriol 172: 4555–4562.

    PubMed  CAS  Google Scholar 

  • Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85: 6602–6606.

    Article  PubMed  CAS  Google Scholar 

  • Hespell RB (1984) Influence of ammonia assimilation pathways and survival strategy on rumen microbial growth. In: Herbivore Nutrition in the Subtropics and Tropics, pp. 346–358. Craighall, South Africa: Science Press.

    Google Scholar 

  • Hill RT, Parker JR, Goodman HJK, Jones DT, Woods DR (1989) Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. J Gen Microbiol 135: 3271–3279.

    PubMed  CAS  Google Scholar 

  • Janson CA, Kayne PS, Almassy RJ, Grunstein M, Eisenberg D (1986) Sequence of glutamine synthetase from Salmonella typhimurium and implications for the protein structure. Gene 46: 297–300.

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar A, Schulamn I, MacNeil D, Barnes EM (1986) Role of the Eschericia coli glnALG operon in regulation of ammonium transport. J Bacteriol 166: 281–284.

    PubMed  CAS  Google Scholar 

  • Jayakumar A, Hong J-S, Barnes EM (1987) Feedback inhibition of ammonium (methylammonium) ion transport in Escherichia coli by glutamine and glutamine analogs. J Bacteriol 169: 553–557.

    PubMed  CAS  Google Scholar 

  • Jenkinson HF, Buttery PJ, Lewis D (1979) Assimilation of ammonia by Bacteroides amylophilus in chemostat cultures. J Gen Microbiol 113: 305–313.

    Article  CAS  Google Scholar 

  • Jensen KF (1983) Metabolism of five phosphoribosyl-pyrophosphate (PRPP) in Escherichia coli and Salmonella typhimurium. In: Munch-Petersen A, ed. Metabolism of Nucleotides, Nucleosidase, and Nucleobases in Microorganisms, pp. 1–25. London: Academic Press.

    Google Scholar 

  • Jensen RA (1992) An emerging outline of the evolutionary history of aromatic amino acid biosynthesis. In: Mortlock RP, ed. The Evolution of Microbial Function, pp. 205–236. West Coldwell NJ: Tulsa Press.

    Google Scholar 

  • Joyner AE, Baldwin RL (1966) Enzymatic studies of pure cultures of rumen microorganisms. J Bacteriol 92: 1321–1330.

    PubMed  CAS  Google Scholar 

  • Kamio Y, Nakamura K (1987) Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J Bacteriol 169: 2881–2884.

    PubMed  CAS  Google Scholar 

  • Kamio Y, Itoh Y, Terawaki Y, Kusano T (1981) Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. J Bacteriol 145: 122–128.

    PubMed  CAS  Google Scholar 

  • Kenealy WR, Thompson TE, Schebt KR, Zeikus JG (1982) Ammonia assimilation and biosynthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum. J Bacteriol 150: 1357–1365.

    PubMed  CAS  Google Scholar 

  • Kilstrup M, Meng LM, Neuhard J, Nygaard P (1989) Genetic evidence for a repressor of synthesis of cytosine deaminase and purine biosynthesis enzymes in Escherichia coli. J Bacteriol 171: 2124–2127.

    PubMed  CAS  Google Scholar 

  • Kleiner D (1982) Ammonium (methylammonium) transport by Klebsiella pneumoniae. Biochim Biophys Acta 688: 702–708.

    Article  PubMed  CAS  Google Scholar 

  • Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32: 87–100.

    Article  CAS  Google Scholar 

  • Kneifel H, Stetter, KO, Andreesen JR, Wiegel J, Konig H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7: 241–245.

    Article  CAS  Google Scholar 

  • Kredich NM (1987) Biosynthesis of cysteine. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 419–428. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Kuczius T, Eilinger T, D’Ari R, Castroph H, Kleiner D (1991) The gltF gene of Klebsiella pneumoniae: cloning and initial characterization. Mol Gen Genet 229: 479–482.

    Article  PubMed  CAS  Google Scholar 

  • Kustu S, Sci K, Keener J (1986) Nitrogen regulation in enteric bacteria. In: Booth JR, Higgins CR, eds. Regulation of Gene Expression, pp. 139–154. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kustu S, North AK, Weiss DS (1991) Prokaryotic transcriptional enhancers and enhancerbinding proteins. Trends Biochem Sci 16: 397–402.

    Article  PubMed  CAS  Google Scholar 

  • Lam H-M, Winkler ME (1990) Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. J Bacteriol 172: 6518–6528.

    PubMed  CAS  Google Scholar 

  • Leisinger T (1987) Biosynthesis of proline. In: Neidhardt FC, Ingraham JL, Low, KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 345–351. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Li X, Singh KV, Weinstock, EN, Murray DE (1994) Organization of the Enterococcus faecalis purine biosynthesis gene cluster. Abst of 94th Meeting Am Soc Microbiol Paper, p. 132.

    Google Scholar 

  • Lin H-P, Reeves HC (1991) Phosphorylation of Escherichia coli NADP+ specific glutamate dehydrogenase. Curr Microbiol 22: 181–184.

    Article  CAS  Google Scholar 

  • Lozoya E, Sanchez-Pescador R, Covarubbias A, Vichido I, Bolivar F (1980) Tight linkage of genes that encode the two glutamate synthase subunits of Escherichia coli K-12. J Bacteriol 144: 616–621.

    PubMed  CAS  Google Scholar 

  • MacFarlane GT, MacFarlane S, Gibson GR (1993) Synthesis and release of proteases by Bacteroides fragilis. Curr Microbiol 24: 55–59.

    Article  Google Scholar 

  • Mackie RI, Therion JJ (1984) Influence of mineral interactions on growth efficiency of rumen bacteria. In: Gilchrist FMC, Mackie RI, eds. Herbivore Nutrition in the Subtropics and Tropics, pp. 455–477. Craighall, South Africa: Science Press.

    Google Scholar 

  • Madonna MJ, Fuchs RL, Brenchley JE (1985) Fine structure analysis of Salmonella typhimurium glutamate synthase genes. J Bacteriol 161: 353–360.

    PubMed  CAS  Google Scholar 

  • Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet 16: 135–168.

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B (1988) Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem Sci 13: 475–479.

    Article  PubMed  CAS  Google Scholar 

  • Makoff AJ, Radford A (1978) Genetics and biochemistry of carbamoyl phosphate biosynthesis and its utilization in the pyrimidine biosynthetic pathway. Microbiol Rev 42: 307–328.

    PubMed  CAS  Google Scholar 

  • McBride BC, Joe A, Singh U (1990) Cloning of Bacteroides gingivalis surface antigens involved with adherence. Arch Oral Biol 55: 59–68.

    Article  Google Scholar 

  • McLaggan D, Naprstek J, Buurman ET, Epstein W (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 261: 1911–1917.

    Google Scholar 

  • Meers JL, Tempest DW, Brown GM (1970) Glutamine (amide): oxoglutarate amino transferase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Mehrez AZ, Orskov ER, MacDonald I (1977) Rates of ruminai fermentation in relation to ammonia concentration. Br J Nutr 38: 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Merrick MJ (1988) Regulation of nitrogen assimilation by bacteria. In: Cole JK, Ferguson SK, eds. The Nitrogen and Sulfur Cycles, pp. 331–361. Symposium of the Society of General Microbiology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59: 604–622.

    PubMed  CAS  Google Scholar 

  • Miller RE, Stadtman ER (1972) Glutamate synthase from Escherichia coll. an iron-sulfide flavoprotein. J Biol Chem 247: 7407–7419.

    PubMed  CAS  Google Scholar 

  • Montellico DJ, Hadioetomo RS, Costilow RN (1984) Isoleucine synthesis by Clostridium sporogenes from propionate or α-methylbutyrate. J Gen Microbiol 130: 309–318.

    Google Scholar 

  • Montellico DJ, Costilow RN (1982) Interconversion of valine and leucine by Clostridium sporogenes. J Bacteriol 152: 946–949.

    Google Scholar 

  • Morrison M, Mackie RI (1996) Nitrogen metabolism by ruminai microorganisms: current understanding and future perspectives. Aust J Agric Res 47: 227–246.

    Article  Google Scholar 

  • Nakano Y, Kimura K (1991) Purification and characterization of a repressor for the Bacillus cereus glnRA operon. J Biochem 109: 223–228.

    PubMed  CAS  Google Scholar 

  • Nakano Y, Tanaka E, Kato C, Kimura K, Horikoshi K (1989) The complete nucleotide sequence of the glutamine synthetase gene (glnA) of Bacillus subtilis. FEMS Microbiol Lett 57: 81–86.

    Article  CAS  Google Scholar 

  • Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Neuhard J (1983) Utilization of preformed pyrimidine basis and nucleosides. In: Munch-Petersen A, ed. Metabolism of Nucleotides, Nucleosides, and Nucleobases in Micoorganisms, pp. 95–148. London: Academic Press.

    Google Scholar 

  • Neuhard J, Kelln RA (1996) Biosynthesis and conversion of pyrimidines. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 580–599. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Neuhard J, Nygaard P (1987) Purines and pyrimidines. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 445–473. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Niederman RA, Wolin MJ (1967) Arginine biosynthesis by Streptococcus bovis. J Bacteriol 94: 100–102.

    Google Scholar 

  • Nygaard P (1983) Utilization of preformed purine bases and nucleosides. In: Munch-Petersen A, ed. Metabolism in Nucleotides, Nucleosides, and Nucleobases in Microorganisms, pp. 27–93. London: Academic Press.

    Google Scholar 

  • Nygaard P (1993) Purine and pyrimidine salvage pathways. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and other gram-positive bacteria, pp. 359–380. Washington, DC: American Society of Microbiology.

    Google Scholar 

  • Oliver G, Gossett G, Sanchez-Pescador E, et al. (1987) Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 60: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Pan FL, Coote JG (1979) Glutamine synthetase and glutamate synthase activities during growth and sporulation of Bacillus subtilis. J Gen Microbiol 131: 1903–1910.

    Google Scholar 

  • Patte J-C (1996) Biosynthesis of threonine and lysine. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 528–541. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Patterson JA, Hespell RB (1985) Glutamine synthetase activity in the ruminai bacterium Succinivibrio dextrinosolvens. Appl Environ Microbiol 50: 1014–1020.

    PubMed  CAS  Google Scholar 

  • Paulus H (1993) Biosynthesis of the aspartate family of amino acids. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and Other Gram-Positive Bacteria, pp. 237–268. Washington, DC: American Society of Microbiology.

    Google Scholar 

  • Pegg AE (1986) Recent advances in the biochemistry of poly amines in eukaryotes. Biochem J 234: 249–262.

    PubMed  CAS  Google Scholar 

  • Phillips AT, Nuss JI, Moosic J, Foshay C (1972) Alternate pathway for isoleucine biosynthesis in Escherichia coli. J Bacteriol 109: 714–719.

    PubMed  CAS  Google Scholar 

  • Pittard AJ (1987) Biosynthesis of the aromatic amino acids. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 368–394. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Pittard AJ (1996) Biosynthesis of aromatic amino acids. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 458–484. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Pittman KA, Bryant MP (1964) Peptides and other nitrogen sources for growth of Bacteroides rumincola. J Bacteriol 88: 401–410.

    PubMed  CAS  Google Scholar 

  • Ravnikar PD, Somerville RL (1987) Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli. J Bacteriol 169: 2611–2617.

    PubMed  CAS  Google Scholar 

  • Reitzer LJ (1983) Aspartate and asparagine biosynthesis. In: Herrmann KM, Somerville RL, eds. Amino Acids: Biosynthesis and Genetic Regulation, pp. 133–145. Reading, Mass: Addison-Wesley.

    Google Scholar 

  • Reitzer LJ (1996) Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 391–407. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Reitzer LJ, Magasanik B (1982) Asparagine synthetases of Klebsiella aerogenes: properties and regulation of synthesis. J Bacteriol 151: 1299–1313.

    PubMed  CAS  Google Scholar 

  • Reitzer LJ, Magasanik B (1987) Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 302–320. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Riba L, Becerril B, Servin-Gonsalez L, Valle F, Bolivar F (1988) Identification of a functional promoter for the Escherichia coli gdhA gene and its regulation. Gene 71: 233–246.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, IM, Allison MJ (1969) Isoleucine biosynthesis from 2-methyl-butyric acid by anaerobic bacteria from the rumen. J Bacteriol 97: 1220–1226.

    PubMed  CAS  Google Scholar 

  • Rolfes R, Zalkin H (1988a) Regulation of Escherichia coli purF. Mutations that define the promoter, operator, and purine repressor gene. J Biol Chem 263: 19649–19652.

    PubMed  CAS  Google Scholar 

  • Rolfes RJ, Zalkin H (1988b) Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the purF operator. J Biol Chem 263: 19653–19661.

    PubMed  CAS  Google Scholar 

  • Rolfes RJ, Zalkin H (1990) Autoregulation of Escherichia coli purR requires two control sites downstream of the promoter. J Bacteriol 172: 5758–5766.

    PubMed  CAS  Google Scholar 

  • Russell JB (1983) Fermentation of peptides by Bacteroides ruminicola B14. Appl Environ Microbiol 45: 1566–1574.

    PubMed  CAS  Google Scholar 

  • Russell (1992) Glucose toxicity and the inability of Bacteroides ruminicola to regulate glucose transport and utilization. Appl Environ Microbiol 58: 2040–2045.

    PubMed  CAS  Google Scholar 

  • Russell JB, Strobel HJ (1987) Concentration of ammonia across cell membranes of mixed rumen bacteria. J Dairy Sci 70: 970–976.

    Article  PubMed  CAS  Google Scholar 

  • Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic rates. Microbiol Rev 59: 48–62.

    PubMed  CAS  Google Scholar 

  • Sakamoto N, Kotre AM, Savageau MA (1975) Glutamate dehydrogenase from Escherichia coli: purification and properties. J Bacteriol 124: 775–783.

    PubMed  CAS  Google Scholar 

  • Sampei GI, Mizobuchi K (1989) The organization of the purL gene encoding 5′-phosphoribosylformyl-glycine-amide transferase of Escherichia coli. J Biol Chem 264: 21230–21238.

    PubMed  CAS  Google Scholar 

  • Sauer FD, Erfle JD, Mahadevan S (1975) Amino acid biosynthesis in mixed rumen cultures. Biochem J 150: 357–372.

    PubMed  CAS  Google Scholar 

  • Schaefer DM, Davis CL, Bryant MP (1980) Ammonia saturation constants for predominant species of rumen bacteria. J Dairy Sci 63: 1248–1263.

    Article  PubMed  CAS  Google Scholar 

  • Schendel FJ, Mueller E, Subbe J, Shiau A, Smith JM (1989) Formylglycinamide ribonucleotide synthetase from Escherichia coli; cloning, sequencing, overproduction, isolation and characterization. Biochem J 28: 2459–2471.

    Article  CAS  Google Scholar 

  • Schwaca A, Bender RA (1993a) The nac (nitrogen assimilation control) gene from Klebsiella aerogenes. J Bacteriol 175: 2107–2115.

    Google Scholar 

  • Schwaca A, Bender RA (1993b) the product of the Klebsiella aerogenes nac (nitrogen assimilation control) gene is sufficient for activation of the hut operons and the gdh operon. J Bacteriol 175: 2116–2124.

    Google Scholar 

  • Servin-Gonzalez L, Bastarrachea F (1984) Nitrogen regulation of synthesis of the high affinity methylammonium transport system of Escherichia coli. J Gen Microbiol 130: 3071–3077.

    PubMed  CAS  Google Scholar 

  • Schreier HJ (1993) Biosynthesis of glutamine and glutamate and the assimilation of ammonia In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and other grampositive bacteria, pp. 281–298. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Schreier HJ, Sonenshein AL (1986) Altered regulation of the glnA gene in the glutamine synthetase mutants of Bacillus subtilis. J Bacteriol 167: 35–43.

    PubMed  CAS  Google Scholar 

  • Slyter LL (1976) Influence of acidosis on rumen function. J Anim Sci 43: 910–929.

    PubMed  CAS  Google Scholar 

  • Smith CJ, Hespell RB, Bryant MP (1980) Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium. J Bacteriol 141: 593–602.

    PubMed  CAS  Google Scholar 

  • Smith EL, Austin BM Blumenthal KM, Nyc JF (1975) Glutamate dehydrogenases. In: Boyer PD, ed. The Enzymes, Vol. XI, pp. 293–367. New York: Academic Press.

    Google Scholar 

  • Sonenshein AL, Hoch JA, Losick R (1993) Bacillus subtilis and Other Gram-Positive Bacteria. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Southern JA, Parker JA, Woods DR (1986) Expression and purification of glutamine synthetase cloned from Bacteroides fragilis. J Gen Microbiol 132: 2827–2835.

    PubMed  CAS  Google Scholar 

  • Stauffer GV (1987) Biosynthesis of serine and glycine. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, ed. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 412–418. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Stauffer GV (1996) Biosynthesis of serine, glycine, and one-carbon units. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 506–513. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490.

    PubMed  CAS  Google Scholar 

  • Stouthammer AH (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR, ed. International Review of Biochemistry. Microbial Biochemistry, Vol. 21, pp. 28–47. Baltimore: University Park Press.

    Google Scholar 

  • Strobel HJ (1992) Vitamin B12 dependent propionate production by the ruminai bacterium Prevotella ruminicola 23. Appl Environ Microbiol 58: 2331–2333.

    PubMed  CAS  Google Scholar 

  • Switzer L (1989) Regulation of bacterial glutamine phosphoribosylpyrophosphate amidotransferase. In: Herve G, ed. Allosteric Enzymes, pp. 129–151. Boca Raton, Fla: CRC Press.

    Google Scholar 

  • Switzer L, Sogin DC (1973) Regulation and mechanism of phosphoribosylpyrophosphate synthetase. J Biol Chem 248: 1063–1073.

    PubMed  CAS  Google Scholar 

  • Switzer RL, Quinn CL (1993) De novo pyrimidine nucleotide synthesis. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and other gram-positive bacteria, pp. 343–358. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49: 81–99.

    PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H, Hafner EW, Markham GD, Boyle SM (1983) Cloning of Escherichia coli genes for the biosynthetic enzymes for polyamines. Methods Enzymol 94: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Tempest DW, Meers JL, Brown CM (1970) Influence of environment on the content and composition of microbial free amino acid pools. J Microbiol 64: 171–185.

    CAS  Google Scholar 

  • Trotta PP, Platzer KEB, Haschmeyer RH, Meister A (1974) Glutamine binding subunit of glutamate synthase and partial reactions catalyzed by this amidotransferase. Proc Natl Acad Sci USA 71: 4607–4611.

    Article  PubMed  CAS  Google Scholar 

  • Umbarger HE (1987) Biosynthesis of the branched-chain amino acids. In: Neidhardt FC, Ingraham JL, Low KB, Magasnik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 352–367. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Umbarger HE (1990) The study of branched chain amino acid biosynthesis — its roots and its fruits. In: Barak Z, Chipman DM, Schloss JV, eds. Biosynthesis of Branched Chain Amino Acids, pp. 1–24. New York: VCH Publishers.

    Google Scholar 

  • Umbarger HE (1996) Biosynthesis of branched chain amino acids. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 442–457. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Wallace RJ, Cotta MA (1988) Metabolism of nitrogen-containing compounds. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 217–249. New York: Elsevier.

    Google Scholar 

  • Watanabe W, Sampel G-I, Aiba A, Mizobuchi K (1989) Identification and sequence analysis of Escherichia coli purE and purK genes encoding 5′-phosphoribosyl-5-amino-4-imidazole carboxylase for de novo purine biosynthesis. J Bacteriol 171: 198–204.

    PubMed  CAS  Google Scholar 

  • Weisburg WG, Oyaizu H, Woese CR (1985) Natural relationship between Bacteroides and flavobacteria. J Bacteriol 164: 230.

    PubMed  CAS  Google Scholar 

  • Weiss DS, Klose KE, Hoover TR, et al. (1992) Prokaryotic transcriptional activators. In: McKnight SL, Yamamoto KR, eds. Transcriptional Regulation, pp. 667–694. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Wen Z, Morrison M (1996) The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B14 can be attributed to one enzyme (Gdh A) and gdhA expression is regulated in response to nitrogen source available for growth. Appl Environ Microbiol. 62: 3826–3833.

    PubMed  CAS  Google Scholar 

  • Westfall NJH, Charon NW, Peterson DE (1983) Multiple pathways for isoleucine biosynthesis in the spirochete Leptospira. J Bacteriol 154: 846–853.

    PubMed  CAS  Google Scholar 

  • Winkler ME (1987) Biosynthesis of histidine. In: Neidhardt FC, Ingraham JL, Low KB, Magasnik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 395–411. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46: 573–639.

    Article  PubMed  CAS  Google Scholar 

  • Winkler ME (1996) Biosynthesis of histidine. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 485–505. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Woods DR, Santangelo J (1993) Molecular analysis and expression of nitrogen metabolism and electron transport genes of Clostridium. In: Woods DR, ed. The Clostridia and Biotechnology, pp. 201–225. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Yamamoto I, Abe A, Saito H, Ishimoto M (1984) The pathway of ammonia assimilation in Bacteroides fragilis. J Gen Appl Microbiol 30: 499–508.

    Article  CAS  Google Scholar 

  • Yamamoto I, Saito H, Ishimoto M (1987a) Properties of glutamate dehydrogenase purified from Bacteroides fragilis. J Biochem 101: 1391–1397.

    PubMed  CAS  Google Scholar 

  • Yamamoto I, Saito H, Ishimoto M (1987b) Regulation of synthesis and reversible inactivation in vivo of dual coenzyme-specific glutamate dehydrogenase in Bacteroides fragilis. J Gen Microbiol 133: 2773–2780.

    PubMed  CAS  Google Scholar 

  • Zalkin H (1993) De novo purine nucleotide synthesis. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and other gram-positive bacteria, pp. 335–341. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Zalkin H, Nygaard P (1996) Biosynthesis of purine nucleotides. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al., eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 561–579. Washington, DC: American Society for Microbiology.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morrison, M., Mackie, R.I. (1997). Biosynthesis of Nitrogen-Containing Compounds. In: Mackie, R.I., White, B.A. (eds) Gastrointestinal Microbiology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4111-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4111-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6843-4

  • Online ISBN: 978-1-4615-4111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics