Polysaccharide Degradation in the Rumen and Large Intestine

  • Cecil W. Forsberg
  • K.-J. Cheng
  • Bryan A. White
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

The rate and extent of degradation of plant structural tissues during digestion depends on a combination of animal, plant, and microbial factors. The major animal effect is the nature of the digestive tract itself. Ruminants with pregastric ruminai fermentation generally have a lower rate of passage than is seen in monogastric animals, and rumination (regurgitation and remastication) of large particles permits them to macerate fibrous materials more completely than do monogastric animals. Ruminants are thus more efficient at digesting fibrous plant material than are monogastric animals, in which fermentation occurs only in the large intestine. In contrast to ruminants, monogastric animals often tend to consume more readily digestible feeds. For example, cereals are a major component of the diets commonly fed to domestic animals. Thus, there is often a quantitative compositional difference in the substrates available to the digestive microbiota present in ruminants and monogastric animals. Cellulolytic organisms which are of pivotal importance in the rumen are generally viewed to have a lesser role than other fermentative organisms in the postgastric intestinal fermentation of domestic animals; however, there are exceptions — for example, the horse. Undoubtedly the presence or absence of particular gut species is directly related to the diet consumed and the retention time of the system.

Keywords

Microbial Degradation Oligosaccharide Galactose Ferritin Sorghum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin DE, Benner R (1988) Degradation of polysaccharides and lignin by ruminai bacteria and fungi. Appl Environ Microbiol 54: 1117–1125.PubMedGoogle Scholar
  2. Akin DE, Gordon GRL, Hogan JP (1983) Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Appl Environ Microbiol 46: 738–748.PubMedGoogle Scholar
  3. Akin DE, Lyon CE, Windham WR, Rigsby LL (1989) Physical degradation of lignified stem tissues by ruminai fungi. Appl Environ Microbiol 55: 611–616.PubMedGoogle Scholar
  4. Akin DE, Rigsby LL, Hanna WW, Gates RN (1991) Structure and digestibility of tissues in normal and brown midrib pearl millet (Pennisetum glaucum). J Sci Food Agric 56: 523–538.Google Scholar
  5. Akin DE, Borneman WS, Rigsby LL, Martin SA (1993) p-Coumaroyl and feruloyl arabinoxylans from plant cell walls as substrates for ruminai bacteria. Appl Environ Microbiol 59: 644–647.PubMedGoogle Scholar
  6. Anderson KL, Salyers AA (1989a) Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol 171: 3192–3198.PubMedGoogle Scholar
  7. Anderson KL, Salyers AA (1989b) Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 171: 3199–3204.PubMedGoogle Scholar
  8. Asmundson RV, Huang C-M, Kelly WJ, Yu P-L, Curry MM (1990) The cellulase of Ruminococcus flavefaciens 186: characterization, cloning and use in ruminant nutrition. In: Akin DE, Ljungdahl LG, Wilson JR, Harris PJ, eds. Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 401–409. New York: Elsevier.Google Scholar
  9. Attwood GT, Davies NJ, Herreras F, White BA (1992) Cloning and partial characterization of a cellulase gene from the rumen anaerobe, Ruminococcus albus. Abstr. Ann. Meet. Amer Soc Microbiol p. 281.Google Scholar
  10. Attwood GT, Herreras F, Weissensten L, White BA (1996) An endo-ß-1, 4-glucanase gene (cel A) from the rumen anaerobe Ruminococcus albus 8: cloning, sequencing and transcriptional analysis. Can J Microbiol. 42: 267–278.PubMedGoogle Scholar
  11. Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Stumpf PK, Conn EE, eds. The Biochemistry of Plants, pp. 297–371. New York: Academic Press.Google Scholar
  12. Bae HD, McAllister TA, Yanke J, Cheng KJ, Muir AD (1993) Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol 59: 2132–2138.PubMedGoogle Scholar
  13. Barros MEC, Thomson JA (1987) Cloning and expression in Escherichia coli of a cellulase gene from Ruminococcus flavefaciens. J Bacteriol 169: 1760–1762.PubMedGoogle Scholar
  14. Beaudette, LA (1994) The effect of methanogenesis on the consortial degradation of cellulose. Ph.D. thesis, University of Calgary, Calgary, Alberta, Canada.Google Scholar
  15. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13: 25–58.PubMedGoogle Scholar
  16. Ben-Ghedalia D, Yosef E, Solomon R, et al. (1994) Size exclusion chromatography of cotton stalk lignins isolated from rumen digesta and feces of sheep. J Agric Food Chem 41: 1160–1163.Google Scholar
  17. Berger E, Jones WA, Jones DT, Woods DR (1989) Cloning and sequencing of an endoglucanase (endl) gene from Butyrivibrio fibrisolvens H17c. Mol Gen Genet 219: 183–198.Google Scholar
  18. Berger E, Jones WA, Jones DT, Woods DR (1990) Sequencing and expression of a cellodextrinase (cedl) gene from Butyrivibrio fibrisolvens H17c cloned in Escherichia coli. Mol Gen Genet 223: 310–318.PubMedGoogle Scholar
  19. Bernalier A, Fonty G, Bonnemoy F, Gouet P (1993) Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. J Gen Microbiol 139: 873–880.PubMedGoogle Scholar
  20. Bhat S, Wallace RJ, Orskov ER (1990) Adhesion of cellulolytic ruminai bacteria to barley straw. Appl Environ Microbiol 56: 2698–2703.PubMedGoogle Scholar
  21. Black GW, Hazlewood GP, Xue GP, Orpin CG, Gilbert HJ (1994) Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem J 299: 381–387.PubMedGoogle Scholar
  22. Borneman WS, Hartley RD, Morrison WH, Akin DE, Ljungdahl LG (1990) Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol 33: 345–351.Google Scholar
  23. Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 57: 2337–2344.PubMedGoogle Scholar
  24. Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1992) Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 58: 3762–3766.PubMedGoogle Scholar
  25. Broussolle V, Forano E, Gaudet G, Ribot Y (1993) Nucleotide sequence of the endB gene of Fibrobacter succinogenes S85 encoding a novel family E ß-1, 4-endoglucanase. GenBank L14436.Google Scholar
  26. Cabotaje LM, Lipez-Guisa JM, Shinnick FL, Marlett JA (1990) Neutral sugar composition and gravimetric yield of plant and bacterial fractions of faeces. Appl Environ Microbiol 56: 1786–1792.PubMedGoogle Scholar
  27. Campbell GL, Bedford MR (1992) Enzyme applications for mongastric feeds: a review. Can J Anim Sci 72: 449–466.Google Scholar
  28. Carpita N, Gibeaut DM (1993) Structural models of primary cell walls of flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3: 1–30.PubMedGoogle Scholar
  29. Cavicchioli R, East PD, Watson K (1991) end AFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1. J Bacteriol 173: 3265–3268.PubMedGoogle Scholar
  30. Chen H, Xinliang L, Ljungdahl LG (1994) Isolation and properties of an extracellular ß-glucosidase from the polycentric rumen fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 60: 64–70.PubMedGoogle Scholar
  31. Cheng K-J, Fay JP, Howarth RE, Costerton JW (1980) Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl Environ Microbiol 40: 613–625.PubMedGoogle Scholar
  32. Cheng K-J, Kudo H, Duncan SH, Mesbah A, Stewart CS, Bernalier A, Fonty G, Costerton JW (1991a) Prevention of fungal colonization and digestion of cellulose by the addition of methylcellulose. Can J Microbiol 37: 484–487.PubMedGoogle Scholar
  33. Cheng KJ, Forsberg CW, Minato H, et al (1991b) Microbial ecology and physiology of feed degradation within the rumen. In: Tsuda T, Sasaki H, Kawashima R, eds. Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 595–624. New York: Academic Press.Google Scholar
  34. Chesson A (1993) Mechanistic models of forage cell wall degradation. In: Jung HG, Buxton DR, Hatfield RD, eds. Forage Cell Wall Structure and Digestibility, pp. 347–376. Madison: American Society of Agronomy.Google Scholar
  35. Chesson A, Forsberg CW (1988) Polysaccharide degradation by rumen microorganisms. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 251–284. London: Elsevier Science.Google Scholar
  36. Chesson A, Gordon AH, Lomax JA (1985) Methylation analysis of mesophyll, epidermis, and fibre cell-walls isolated from the leaves of perennial and Italian ryegrass. Carbohydr Res 141: 137–147.Google Scholar
  37. Claeyssens M, Henrissat B (1992) Specificity mapping of cellulolytic enzymes — classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci 1: 1293–1297.PubMedGoogle Scholar
  38. Clark, RG, Cheng K-J, Selinger LB, Hynes MF (1994) A conjugative transfer system for rumen bacterium Butyrivibrio fibrisolvens based on Tn916-mediated transfer of the Staphylococcus aureus plasmid pUB110. Plasmid. 32: 295–305.PubMedGoogle Scholar
  39. Clark RG, Hu Y-J, Hynes MF, Salmon RK, Cheng K-J (1992) Cloning and expression of an amylase gene from Streptococcus bovis in Escherichia coli. Arch Microbiol 157: 201–204.PubMedGoogle Scholar
  40. Coleman GS (1978) The metabolism of cellulose, glucose, and starch by the rumen ciliate protozoa Eudiplodinium maggii. J Gen Microbiol 107: 359–366.Google Scholar
  41. Coleman GS (1985) The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. J Agric Sci 107: 709–721.Google Scholar
  42. Coleman GS (1986) The amylase activity of 14 species of entodiniomorphid protozoa and the distribution of amylase in digesta fractions of sheep containing no protozoa or one of seven different protozoal populations. J Agric Sci 107: 709–721.Google Scholar
  43. Coleman GS (1992) The rate of uptake and metabolism of starch grains and cellulose particles by Entodinium species, Eudiplodinium maggii, some other entodiniomorphid protozoa and natural protozoal populations taken from the ovine rumen. J Appl Bacteriol 73: 507–513.PubMedGoogle Scholar
  44. Comai L (1993) Impact of plant genetic engineering on foods and nutrition. Annu Rev Nutr 13: 191–215.PubMedGoogle Scholar
  45. Cotta MA (1988) Amylolytic activity of selected species of ruminai bacteria. Appl Environ Microbiol 54: 772–776.PubMedGoogle Scholar
  46. Cotta MA, Whitehead TR (1993) Regulation and cloning of the gene encoding amylase activity of the ruminai bacterium Streptococcus bovis. Appl Environ Microbiol 59: 189–196.PubMedGoogle Scholar
  47. Cummings JH (1981) Dietary fibre. Br Med Bull 37: 65–70.PubMedGoogle Scholar
  48. Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70: 443–459.PubMedGoogle Scholar
  49. Cunningham C, McPherson CA, Martin J, Harris WJ, Flint HJ (1991) Sequence of a cellulase gene from the rumen anaerobe Ruminococcus flavefaciens 17. Mol Gen Genet 228: 320–323.PubMedGoogle Scholar
  50. Deguchi H, Watanabe Y, Sasaki T, Matsuda T, Shimizu S, Ohmiya K (1991) Purification and properties of the endo-1, 4-ß-glucanase from Ruminococcus albus and its gene products in Escherichia coli. J Ferment Bioeng 71: 221–225.Google Scholar
  51. Dehority BA (1993) Microbial ecology of cell wall fermentation. In: Jung HG, Buxton DR, Hatfield RD, Ralph J, eds. Forage Cell Wall Structure and Digestibility, pp. 425–453. Madison: American Society of Agronomy.Google Scholar
  52. Din N, Gilkes NR, Tekant B, Miller RC Jr, Warren RAJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Biotechnology 9: 1096–1099.Google Scholar
  53. Dinwoodie JM (1975) Timber — a review of the structure-mechanical property relationship. J Microsc 104: 3–32.Google Scholar
  54. Doerner KC, Gardner RM, Schook LB, Mackie RI, White BA (1994) Inhibition of the exo-ß-1, 4-glucanase from Ruminococcus flavefaciens FD-1 by a specific monoclonal antibody. Enzyme Microb Technol 16: 2–9.Google Scholar
  55. Doerner KC, Howard GT, Mackie RI, White BA (1992) ß-glucanase expression by Ruminococcus flavefaciens FD-1. Microbiol Lett 93: 147–154.Google Scholar
  56. Doerner KC, White BA (1990a) Detection of glycoproteins separated by non-denaturing polyacrylamide gel electrophoresis. Anal Biochem 187: 147–150.PubMedGoogle Scholar
  57. Doerner KC, White BA (1990b) Assessment of the endo-ß-1, 4-glucanase components of Ruminococcus flavefaciens FD-1. Appl Environ Microbiol 56: 1844–1850.PubMedGoogle Scholar
  58. Enzyme nomenclature (1992) Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. New York: Academic Press.Google Scholar
  59. Erfle JD, Teather RM, Wood PJ, Irvin JE (1988) Purification and properties of a 1, 3-1, 4-ß-D-glucanase (lichenase, 1, 3-1, 4-ß-D-glucan 4-glucanohydrolase, EC-3.2.1.73) from Bacteroides succinogenes cloned in Escherichia coli. Biochem J 255: 833–841.PubMedGoogle Scholar
  60. Flint HJ, Martin J, McPherson CA, Daniel AS, Zhang J-X (1993) A bifunctional enzyme, with separate xylanase and ß(1, 3-1, 4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol 175: 2943–2951.PubMedGoogle Scholar
  61. Flint HJ, McPherson CA, Bisset J (1989) Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and ß(1-3, 1-4)glucanase activities. Appl Environ Microbiol 55: 1230–1233.PubMedGoogle Scholar
  62. Flint HJ, McPherson CA, Martin J (1991) Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. J Gen Microbiol 137: 123–129.PubMedGoogle Scholar
  63. Forano E, Broussolle V, Gaudet G, Bryant JA (1994) Molecular cloning, expression, and characterization of a new endoglucanase gene from Fibrobacter succinogenes S85. Curr Microbiol 28: 7–14.Google Scholar
  64. Forsberg CW, Cheng KJ, Krell PJ, Phillips JP (1993) Establishment of rumen microbial gene pools and their manipulation to benefit fibre digestion by domestic animals. In: Proceedings VII World Conference on Animal Production, pp. 281–316. Edmonton: World Association for Animal Production.Google Scholar
  65. Forsberg CW, Cheng KJ (1992) Molecular strategies to optimize forage and cereal digestion by ruminants. In: Bills DD, Kung S-D, eds. Biotechnology and Nutrition, pp. 109–147. Stoneham: Butterworth-Heinemann.Google Scholar
  66. Forsberg CW, Crosby B, Thomas DY (1986) Potential for manipulation of the rumen fermentation through the use of recombinant DNA techniques. J Anim Sci 63: 310–325.PubMedGoogle Scholar
  67. Francisco JA, Stathopoulos C, Warren RAJ, Kilburn DG, Georgiou G (1993) Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Biotechnology 11: 491–495.PubMedGoogle Scholar
  68. Franklund CV, Glass TL (1987) Glucose uptake by the cellulolytic ruminai anaerobe Bacteroides succinogenes. J Bacteriol 169: 500–506.PubMedGoogle Scholar
  69. Freer SN (1993) Purification and characterization of the extracellular α-amylase from Streptococcus bovis JB1. Appl Environ Microbiol 59: 1398–1402.PubMedGoogle Scholar
  70. Fry SC (1988) The Growing Plant Cell Wall: Chemical and Metabolic Analysis. London: Longman Scientific and Technical.Google Scholar
  71. Fuewa H, Takaya T, Sugimoto Y (1980) Degradation of various starch granules by amylases. In: Marshall JJ, ed. Mechanisms of Saccharide Polymerization and Depolymerization, pp. 73–100. New York: Academic Press.Google Scholar
  72. Garcia-Campayo V, Wood TM (1993) Purification and characterisation of a ß-D-xylosidase from the anaerobic rumen fungus Neocallimastix frontalis. Carbohydr Res 242: 229–245.PubMedGoogle Scholar
  73. Gardner RM, Doerner KC, White BA (1987) Purification and characterization of an exo ß-1, 4-glucanase from Ruminococcus flavefaciens FD-1. J Bacteriol 169: 4581–4588.PubMedGoogle Scholar
  74. Gavini F, Pourcher A-M, Neut C, Monget D, Romond C, Oger C, Izard D (1991) Phenotypic differentiation of bifidobacteria of human and animal origins. Int J Syst Bacteriol 41: 548–557.PubMedGoogle Scholar
  75. Geun Eog J, Han H-K, Yun S-W, Rhim SL (1992) Isolation of amylolytic Bifidobacterium sp. Int-57 and characterization of amylase. J Microbiol Biotechnol 2: 85–91.Google Scholar
  76. Gherardini F, Babcock M, Salyers AA (1985) Purification and characterization of two α-galactosidases associated with catabolism of guar gum and other a-galactosides by Bacteroides ovatus. J Bacteriol 161: 500–506.PubMedGoogle Scholar
  77. Gherardini F, Salyers AA (1987) Purification and characterization of a cell-associated, soluble mannanase from Bacteroides ovatus. J Bacteriol 169: 2038–2043.PubMedGoogle Scholar
  78. Gibson GR, Cummings IH, Macfarlane GT (1988) Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol 65: 241–247.PubMedGoogle Scholar
  79. Gilbert HJ, Hazlewood GP, Laurie JI, Orpin CG, Xue GP (1992) Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol Microbiol 6: 2065–2072.PubMedGoogle Scholar
  80. Gilkes NR, Henrissat B, Kilburn DG, Miller J, R.C., Warren RAJ (1991) Domains in microbial ß-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55: 303–315.PubMedGoogle Scholar
  81. Gold, MH, Alic M (1993) Molecular biology of the lignin-degrading Basidiomycete Phanaerochaete chrysosporium. Microbiol Rev 57: 605–622.PubMedGoogle Scholar
  82. Gomez de Segura B, Fevre M (1993) Purification and characterization of 2 l, 4-ß-xylan endohydrolases from the rumen fungus Neocallimastix frontalis. Appl Environ Microbiol 59: 3654–3660.Google Scholar
  83. Gong J, Forsberg CW (1989) Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl Environ Microbiol 55: 3039–3044.PubMedGoogle Scholar
  84. Gong J, Forsberg CW (1993) Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanase and cellobiase. J Bacteriol 175: 6810–6821.PubMedGoogle Scholar
  85. Gordon GLR, Phillips M (1989a) Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen. Appl Environ Microbiol 55: 1703.PubMedGoogle Scholar
  86. Gordon GL, Phillips MW (1989b) Comparative fermentation properties of anaerobic fungi from the rumen. In: Nolan JV, Leng RA, Phillips MW, eds. The Roles of Protozoa and Fungi in Ruminant Nutrition, pp. 127–138. Armidale, Australia: Penambul Books.Google Scholar
  87. Gordon GLR, Phillips MW (1992) Extracellular pectin lyase produced by Neocallimastix sp: LM1, a rumen anaerobic fungus. Lett Appl Microbiol 15: 113–115.Google Scholar
  88. Gregg K, Rowan A, Ware C (1993) Digestion of filter-paper by cellulases cloned from Ruminococcus albus AR67. In: Shimada K, Ohmiya K, Kobayashi Y, Hoshino S, Sakka K, Karita S, eds. Genetics, Biochemistry and Ecology of Lignocellulose Degradation, pp. 166–172. Tokyo: Uni Publishers.Google Scholar
  89. Greve LC, Labavitch JM, Hungate RE (1984a) Xylanase action on alfalfa cell walls. In: Dugger WM, Bartnicki-Garcia S, eds. Structure, Function, and Biosynthesis of Plant Cell Walls, pp. 150–166. Riverside: University of California.Google Scholar
  90. Greve LC, Labavitch JM, Hungate RE (1984b) α-L-Arabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl Environ Microbiol 47: 1135–1140.PubMedGoogle Scholar
  91. Groleau D, Forsberg CW (1981) Cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Can J Microbiol 27: 517–530.PubMedGoogle Scholar
  92. Guilbot A, Mercier C (1985) Starch. In: Aspinall GO, ed. The Polysaccharides, pp. 209–282. New York: Academic Press.Google Scholar
  93. Hall J, Ali S, Surani MA, et al. (1993) Manipulation of the repertoire of digestive enzymes secreted into the gastrointestinal tract of transgenic mice. Biotechnology 11: 376–379.PubMedGoogle Scholar
  94. Harris PJ (1990) Plant cell wall structure and development. In: Akin DE, Ljungdahl LG, Wilson JR, Harris PJ, eds. Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 71–90. New York: Elsevier Science.Google Scholar
  95. Hartley RD, Morrison III WH, Borneman WS, et al. (1992) Phenolic constitutents of cell wall types of normal and brown midrib mutants of pearl millet (Pennisetum glaucum (L) R Br) in relation to wall biodegradability. J Sci Food Agric 59: 211–216.Google Scholar
  96. Hazlewood GP, Davidson K, Laurie JI, Romaniec MPM, Gilbert HJ (1990) Cloning and sequencing of the cel A gene encoding endoglucanase A of Butyrivibrio fibrisolvens strain A46. J Gen Microbiol 136: 2089–2097.PubMedGoogle Scholar
  97. Hebraud M, Fevre M (1990a) Purification and characterization of an extracellular ß-xylosidase from the rumen anaerobic fungus Neocallimastix frontalis. FEMS Microbiol Lett 72: 11–16.Google Scholar
  98. Hebraud M, Fevre M (1990b) Purification and characterization of an a specific glycoside hydrolase from the anaerobic ruminai fungus Neocallimastix frontalis. Appl Environ Microbiol 56: 3164–3169.PubMedGoogle Scholar
  99. Heinrichova K, Wojciechowicz M, Ziolecki A (1989) The pectinolytic enzyme of Selenomonas ruminantium. J Appl Bacteriol 66: 169–174.PubMedGoogle Scholar
  100. Helaszek CT, White BA (1991) Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Appl Environ Microbiol 57: 64–68.PubMedGoogle Scholar
  101. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280: 309–316.PubMedGoogle Scholar
  102. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293: 781–788.PubMedGoogle Scholar
  103. Hespell RB, O’Bryan PJ (1992) Purification and characterization of an α-L-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl Environ Microbiol 58: 1082–1088.PubMedGoogle Scholar
  104. Hespell RB, Whitehead TR (1990) Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci 73: 3013–3022.PubMedGoogle Scholar
  105. Hidaka H, Eida T, Takizawa T, Tokunada T, Tashiro Y (1986) Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora 5: 37–50.Google Scholar
  106. Hobson PN, Jouany JP (1988) Models, mathematical and biological, of the rumen function. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 461–511. New York: Elsevier Science.Google Scholar
  107. Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G (1985) Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that derade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 75: 944–953.PubMedGoogle Scholar
  108. Hoskins LC, Boulding ET (1981) Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest 67: 163–172.PubMedGoogle Scholar
  109. Howard GT, White BA (1988) Molecular cloning and expression of cellulase genes from Ruminococcus albus 8 in Escherichia coli bacteriophage A. Appl Environ Microbiol 54: 1752–1755.PubMedGoogle Scholar
  110. Howard GT, White BA (1990) Cloning in Escherichia coli of a bi-functional cellulase xylanase enzyme from Ruminococcus flavefaciens FD-1. Anim Biotechnol 1: 95–106.Google Scholar
  111. Huang L, Forsberg CW, Thomas DY (1988) Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes S85. J Bacteriol 170: 2923–2932.PubMedGoogle Scholar
  112. Huang C-M, Kelly WJ, Asmundson RV, Yu P-L (1989) Molecular cloning and expression of multiple cellulase genes of Ruminococcus flavefaciens strain 186 in Escherichia coli. Appl Microbiol Biotechnol 31: 265–271.Google Scholar
  113. Huang L, McGavin M, Forsberg CW, Lam JS, Cheng KJ (1990) Antigenic nature of the chloride-stimulated cellobiosidase and other cellulases of Fibrobacter succinogenes subsp. succinogenes S85 and related fresh isolates. Appl Environ Microbiol 56: 1229–1234.PubMedGoogle Scholar
  114. Hungate RE (1966) The Rumen and Its Microbes. New York: Academic Press.Google Scholar
  115. Hungate RE, Stack J (1982) Phenylpropanoic acid: growth factor for Ruminococcus albus. Appl Environ Microbiol 44: 79–83.PubMedGoogle Scholar
  116. Hwa V, Salyers AA (1992) Evidence for differential regulation of genes in the chondroitin sulfate utilization pathway of Bacteroides thetaiotaomicron. J Bacteriol 174: 342–344.PubMedGoogle Scholar
  117. Iiyama K, Lam TBT, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104: 315–320.PubMedGoogle Scholar
  118. Ishii S (1984) Cell wall cementing materials of grass leaves. Plant Physiol 76: 959–961.PubMedGoogle Scholar
  119. Iyo AH, Forsberg CW (1994) Features of the cellodextrinase gene from Fibrobacter succinogenes S85. Can J Microbiol 40: 592–596.PubMedGoogle Scholar
  120. Joblin KN, Naylor GE, Williams AG (1990) Effect of Methanobrevibacter smithii on xylanolytic activity of anerobic ruminai fungi. Appl Environ Microbiol 56(8): 2287–2295.PubMedGoogle Scholar
  121. Joyner AE, Baldwin RL (1966) Enzymatic studies of pure cultures of rumen bacteria. J Bacteriol 92: 1321–1330.PubMedGoogle Scholar
  122. Karita S, Morioka K, Kajino T, Sakka K, Shimada K, Ohmiya K (1993) Cloning and sequencing of a novel endo-1, 4-ß-glucanase gene from Ruminococcus albus. J Ferment Bioeng 76: 439–444.Google Scholar
  123. Katz JR (1934) X-ray investigation of gelatinization and retrogradation of starch and its importance for bread research. Bakers Weekly 81: 34–37.Google Scholar
  124. Kawai S, Honda H, Tanase T, Taya M, Iijima S, Kobayashi T (1987) Molecular cloning of Ruminococcus albus cellulase gene. Agric Biol Chem 51: 59.Google Scholar
  125. Kistner A, Kotze JP (1973) Enzymes of intermediary metabolism of Butyrivibrio fibrisolvens and Ruminococcus albus grown under glucose limitation. Can J Microbiol 19: 1119–1127.PubMedGoogle Scholar
  126. Knowles J, Teeri TT, Lehtovaara P, Penttilä M, Salohemio M (1988) The use of gene technology to investigate fungal cellulolytic enzymes. In: Aubert J-P, Béguin P, Millet J, eds. Biochemistry and Genetics of Cellulose Degradation. FEMS Symposium No. 43, pp. 153–169. London: Academic Press.Google Scholar
  127. Kohring S, Wiegel J, Mayer F (1990) Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20. Appl Environ Microbiol 56: 3798–3804.PubMedGoogle Scholar
  128. Kotarski SF, Waniska RD, Thurn KK (1992) Starch hydrolysis by the ruminai microflora. J Nutr 122: 178–190.PubMedGoogle Scholar
  129. Kudo H, Cheng K-J, Costerton JW (1986) Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can J Microbiol 32: 244–248.Google Scholar
  130. Kudo, Cheng KJ, Costerton JW (1987) Electron microscopic study of the methylcellulosemediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can J Microbiol 33: 267–272.PubMedGoogle Scholar
  131. Lam TBT, Iiyama K, Stone BA (1990) Primary and secondary walls of grasses and other forage plants: Taxonomic and structural considerations. In: Akin DE, Ljungdahl LG, Wilson JR, eds. Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 43–69. New York: Elsevier Science.Google Scholar
  132. Lamed R, Setter E, Bayer EA (1983a) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156: 828–836.PubMedGoogle Scholar
  133. Lamed R, Setter E, Kenig R, Bayer EA (1983b) The cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13: 163–181.Google Scholar
  134. Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169: 3792–3800.PubMedGoogle Scholar
  135. Latham MJ, Brooker BE, Pettipher GL, Harris PJ (1978a) Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegtass (Lolium perenne). Appl Environ Microbiol 35: 1166–1173.PubMedGoogle Scholar
  136. Latham MJ, Brooker BE, Pettipher GL, Harris PJ (1978b) Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial rye grass (Lolium perenne). Appl Environ Microbiol 35: 156–165.PubMedGoogle Scholar
  137. Li XL, Calza RE (1991) Kinetic study of a cellobiase purified from Neocallimastixfrontalis EB188. Biochim Biophys Acta 1080: 148–154.PubMedGoogle Scholar
  138. Lin LL, Rumbak E, Zappe H, Thomson JA, Woods DR (1990) Cloning, sequencing and analysis of expression of a Butyrivibrio fibrisolvens gene encoding a ß-glucosidase. J Gen Microbiol 136: 1567–1576.PubMedGoogle Scholar
  139. Lin LL, Thomson JA (1991a) An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 104: 65–82.Google Scholar
  140. Lin LL, Thomson JA (1991b) Cloning, sequencing and expression of a gene encoding a 73 kDa xylanase enzyme from the rumen anaerobe Butyrivibrio fibrisolvens H17c. Mol Gen Genet 228: 55–61.PubMedGoogle Scholar
  141. Lowe SE, Theodorou MK, Trinci APJ (1987) Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan. Appl Environ Microbiol 53: 1216–1223.PubMedGoogle Scholar
  142. Maas LK, Glass TL (1991) Cellobiose uptake by the cellulolytic ruminai anaerobe Fibrobacter (Bacteroides) succinogenes. Can J Microbiol 37: 141–147.PubMedGoogle Scholar
  143. Macfarlane GT, Hay S, Macfarlane S, Gibson GR (1990) Effect of different carbohydrates on growth, polysaccharidase and glycosidiase production by Bacteroides ovatus, in batch and continuous culture. J Appl Bacteriol 68: 179–187.PubMedGoogle Scholar
  144. Macfarlane GT, Macfarlane S (1993) Factors affecting fermentation reactions in the large bowel. Nutr Soc Proc 52: 367–373.Google Scholar
  145. MacGregor AW, Ballance DL (1980) Hydrolysis of large and small starch granules from normal and waxy barley cultivars by α-amylase from barley malt. Cereal Chem 57: 397–402.Google Scholar
  146. Macy JM, Farrand JR, Mongomery L (1982) Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Appl Environ Microbiol 44: 1428–1434.PubMedGoogle Scholar
  147. Maglione G, Matsushita O, Russell JB, Wilson DB (1992) Properties of a genetically reconstructed Prevotella ruminicola endoglucanase. Appl Environ Microbiol 58: 3593–3597.PubMedGoogle Scholar
  148. Malburg LM, Tamblyn Lee JM, Forsberg CW (1992) Degradation of cellulose and hemicellulose by rumen microorganisms. In: Winkelmann G, ed. Microbial Degradation of Natural Products, pp. 127–159. Weinheim: VCH Verlagsgesellschaft mbH.Google Scholar
  149. Malburg LM, Smith DC, Schellhorn HE, Forsberg CW (1993) Fibrobacter succinogenes S85 has multiple xylanase genes. J Appl Bacteriol 75: 564–573.Google Scholar
  150. Malburg LM, Forsberg CW (1993) Fibrobacter succinogenes possesses at least nine distinct glucanase genes. Can J Microbiol 39: 882–891.Google Scholar
  151. Mannarelli M, Evans S, Lee D (1990) Cloning, sequencing, and expression of a xylanase gene from the anaerobic ruminai bacterium Butyrivibrio fibrisolvens. J Bacteriol 172: 4247–4254.PubMedGoogle Scholar
  152. Manners DJ (1985) Some aspects of the structure of starch. Cereal Foods World 30: 461–467.Google Scholar
  153. Marvin-Sikkema FD, Richardson AJ, Stewart CS, Gottschal JC, Prins RA (1990) Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl Environ Microbiol 56: 3793–3797.PubMedGoogle Scholar
  154. Matsushita O, Russell JB, Wilson DB (1991) A Bacteroides ruminicola 1, 4-ß-D-endoglucanase is encoded in two reading frames. J Bacteriol 173: 6919–6926.PubMedGoogle Scholar
  155. Matte A, Forsberg CW, Gibbins AMV (1992) Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Can J Microbiol 38: 370–376.PubMedGoogle Scholar
  156. Matte A, Forsberg CW (1992) Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl Environ Microbiol 58: 157–168.PubMedGoogle Scholar
  157. McAllister TA, Cheng KJ, Rode LM, Buchanan-Smith JG (1990a) Use of formaldehyde to regulate digestion of barley starch. Can J Anim Sci 79: 581–589.Google Scholar
  158. McAllister TA, Cheng KJ, Rode LM, Forsberg CW (1990b) Digestion of barley, maize, and wheat by selected species of ruminai bacteria. Appl Environ Microbiol 56: 3146–3153.PubMedGoogle Scholar
  159. McAllister TA, Dong Y, Yanke LJ, Bae HD, Cheng KJ, Costerton JW (1993) Cereal grain digestion by selected strains of ruminai fungi. Can J Microbiol 39: 367–376.PubMedGoogle Scholar
  160. McAllister TA, Bae HD, Yanke LJ, Cheng KJ, Muir A (1994) Effect of condensed tannins from birdsfoot trefoil on endoglucanase activity and the digestion of cellulose filter paper by ruminai fungi. Can J Microbiol 40: 298–305.PubMedGoogle Scholar
  161. McCarthy RE, Kotarski SF, Salyers AA (1985) Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron. J Bacteriol 161: 493–499.PubMedGoogle Scholar
  162. McDermid KP, Forsberg CW, MacKenzie CR (1990a) Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 56: 3805–3810.PubMedGoogle Scholar
  163. McDermid KP, MacKenzie CR, Forsberg CW (1990b) Esterase activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl Environ Microbiol 56: 127–132.PubMedGoogle Scholar
  164. McGavin M, Forsberg CW (1988) Isolation and characterization of endoglucanases 1 and 2 from Bacteroides succinogenes S85. J Bacteriol 170: 2914–2922.PubMedGoogle Scholar
  165. McGavin MJ, Forsberg CW (1989) Catalytic and substrate-binding domains of endoglucanase 2 from Bacteroides succinogenes. J Bacteriol 171: 3310–3315.PubMedGoogle Scholar
  166. McGavin MJ, Forsberg CW, Crosby B, Bell AW, Dignard D, Thomas DY (1989) Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J Bacteriol 171: 5587–5595.PubMedGoogle Scholar
  167. McGavin M, Lam J, Forsberg CW (1990) Regulation and distribution of Fibrobacter succinogenes subsp. succinogenes S85 endoglucanases. Appl Environ Microbiol 56: 1235–1244.PubMedGoogle Scholar
  168. McKellar RC, Modler HW (1989) Metabolism of fructo-oligosaccharides by Bifidobacterium spp. Appl Microbiol Biotechnol 31: 537–541.Google Scholar
  169. McSweeney CS, Dulieu A, Katayama Y, Lowry JB (1994) Solubilization of lignin by the ruminai anaerobic fungus Neocallimastix patriciarum. Appl Environ Microbiol 60: 2985–2989.PubMedGoogle Scholar
  170. McWethy SJ, Hartman PA (1977) Purification and some properties of an extracellular α-amylase from Bacteroides amylophilus. J Bacteriol 129: 1537–1544.PubMedGoogle Scholar
  171. Minato H, Suto T (1978) Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J Gen Appl Microbiol 24: 1–16.Google Scholar
  172. Minato H, Suto T (1979) Technique for fractionation of bacteria in rumen microbial ecosystem. III. Attachment of bacteria isolated from bovine rumen to starch granules in vitro and elution of bacteria attached therefrom. J Gen Appl Microbiol 25: 71–93.Google Scholar
  173. Miron J (1991) The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminai bacteria. J Appl Bacteriol 70: 245–252.PubMedGoogle Scholar
  174. Miron J, Ben-Ghedalia D (1992) The degradation and utilization of wheat-straw cell-wall monosaccharide components by defined ruminai cellulolytic bacteria. Appl Microbiol Biotechnol 38: 432–437.Google Scholar
  175. Miron J, Ben-Ghedalia D, Yokoyama MT, Lamed R (1990) Some aspects of cellobiose effect on bacterial cell surface structures involved in lucerne cell walls utilization by fresh isolates of rumen bacteria. Anim Feed Sci Technol 30: 107–120.Google Scholar
  176. Miron J, Duncan SH, Stewart CS (1994) Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls. J Appl Bacteriol 76: 282–287.PubMedGoogle Scholar
  177. Miron J, Yokoyama MT, Lamed J (1989) Bacterial cell surface structures involved in lucerne cell wall degradation by pure cultures of cellulolytic rumen bacteria. Appl Microbiol Biotechnol 32: 218–222.Google Scholar
  178. Mitsumori M, Minato H (1993a) Purification of cellulose-binding proteins 1 and 2 from cell lysate of Fibrobacter succinogenes S85. J Gen Appl Microbiol (Tokyo) 39: 361–369.Google Scholar
  179. Mitsumori M, Minato H (1993b) Presence of several cellulose binding proteins in cell lysate of Fibrobacter succinogenes S85. J Gen Appl Microbiol (Tokyo) 39: 273–283.Google Scholar
  180. Montgomery L (1988) Isolation of human colonie fibrolytic bacteria. Lett Appl Microbiol 6: 55–57.Google Scholar
  181. Montgomery L, Flesher B, Stahl D (1988) Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int J Syst Bacteriol 38: 430–435.Google Scholar
  182. Monties B (1989) Lignins. Meth Plant Biochem 1: 113–157.Google Scholar
  183. Moore PJ, Staehelin PJ (1988) Immunogold localization of the cell-wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and eytokinesis in Trifolium pratense L:, implication for secretory-pathways-Planta 174: 433–445.Google Scholar
  184. Morag E, Bayer EA, Lamed R (1990) Relationship of cellulosomal and non-cellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J Bacteriol 172: 6098–6105.PubMedGoogle Scholar
  185. Morris EJ, Cole OJ (1987) Relationship between cellulolytic activity and adhesion to cellulose in Ruminococcus albus. J Gen Microbiol 133: 1023–1032.Google Scholar
  186. Morrison M, Mackie RI, Kistner A (1990) 3-Phenylpropanoic acid improves the affinity of Ruminococcus albus for cellulose in continuous culture. Appl Environ Microbiol 56: 3220–3222.PubMedGoogle Scholar
  187. Mountfort DO, Asher RA (1985) Production and regulation of cellulase by two strains of the rumen anaerobic fungus Neocallimastix frontalis. Appl Environ Microbiol 49: 1314–1322.PubMedGoogle Scholar
  188. Nagaraja TG, Towne G, Beharka AA (1992) Moderation of ruminai fermentation by ciliated protozoa in cattle fed a high-grain diet. Appl Environ Microbiol 58: 2410–2414.PubMedGoogle Scholar
  189. Nakashima Y, Orskov ER, Hotten PM, Ambro K, Takase Y (1988) Rumen degradation of straw. 6. Effect of polysaccharidase enzymes on degradation characteristics of ensiled rice straw. Anim Prod 47: 412–427.Google Scholar
  190. Ni WT, Paiva NL, Dixon RA (1994) Reduced lignin in transgenic plants containing a caffeic acid O-methyltransferase antisense gene. Transgenic Res 3: 120–126.Google Scholar
  191. Odenyo AA, Mackie RI, Stahl DA, White BA (1994a) The use of 16S ribosomal RNA targeted oligonucleotide probes to study competition between ruminai fibrolytic bacteria. I. Development of probes for Ruminococcus species and evidence for bacteriocin production. Appl Environ Microbiol 60: 3688–3696.PubMedGoogle Scholar
  192. Odenyo AA, Mackie RI, Stahl DA, White BA (1994b) The use of 16S ribosomal RNA targeted oligonucleotide probes to study competition between ruminai fibrolytic bacteria. II. Pure culture studies with cellulose and alkaline peroxide treated wheat straw. Appl Environ Microbiol 60: 3697–3703.PubMedGoogle Scholar
  193. Ohmiya K, Shimizu M, Taya M, Shimizu S (1982) Purification and properties of cellobiosidase from Ruminococcus albus. J Bacteriol 150: 407–409.PubMedGoogle Scholar
  194. Ohmiya K, Shirai M, Kurachi Y, Shimizu S (1985) Isolation and properties of ß-glucosi-dase from Ruminococcus albus. J Bacteriol 161: 432–434.PubMedGoogle Scholar
  195. Ohmiya K, Maeda K, Shimizu S (1987) Purification and properties of endo-(1→4)-ß-D-glucanase from Ruminococcus albus. Carbohydr Res 166: 145–155.Google Scholar
  196. Ohmiya K, Nagashima K, Kajino T, Goto E, Tsukada A, Shimuzu S (1988) Cloning of the cellulase gene from Ruminococcus albus and its expression in Escherichia coli. Appl Environ Microbiol 54: 1511–1515.PubMedGoogle Scholar
  197. Ohmiya K, Kajino T, Kato A, Shimizu S (1989) Structure of a Ruminococcus albus endo 1, 4-ß-glucanase gene. J Bacteriol 171: 6771–6775.PubMedGoogle Scholar
  198. Ohmiya K, Maeda K, Shimizu S (1993) Purification and properties of endo-(1-4)-ß-D-glucanase from Ruminococcus albus. Carbohyd Res 166: 145–155.Google Scholar
  199. Okazaki M, Fujikawa S, Matsumoto N (1990) Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobacteria Microflora 9: 77–86.Google Scholar
  200. Orpin CG (1988) Genetic approaches to the improvement of lignocellulose degradation in the rumen. In: Aubert J-P, Béguin P, Millet J, eds. Biochemistry and Genetics of Cellulose Degradation, pp. 172–179. London: Academic Press.Google Scholar
  201. Paradis FW, Zhu H, Krell PJ, Phillips JP, Forsberg CW (1993) The xynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains. J Bacteriol 175: 7666–7672.PubMedGoogle Scholar
  202. Pavlostathis SG, Miller TL, Wolin MJ (1990) Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl Microbiol Biotechnol 33: 109–116.Google Scholar
  203. Pazur JH, Kleppe K (1962) The hydrolysis of α-D-glucosidases by amyloglucosidase from Aspergillus niger. J Biol Chem 237: 1002–1006.PubMedGoogle Scholar
  204. Pen J, Molendijk L, Quax WJ, et al. (1992) Production of active Bacillus licheniformis α-amylase in tobacco and its application in starch liquefaction. Bio/Technology 10: 292–296.PubMedGoogle Scholar
  205. Pettipher GL, Latham MJ (1979) Characteristics of enzymes produced by Ruminococcus flavefaciens that degrade plant cell walls. J Gen Microbiol 110: 21–27.Google Scholar
  206. Phillips MW, Gordon GLR (1988) Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. Biosystems 21: 377–383.PubMedGoogle Scholar
  207. Poole DH, Hazlewood GP, Laurie JI, Barker PJ, Gilbert HJ (1990) Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol Gen Genet 223: 217–223.PubMedGoogle Scholar
  208. Poole DM, Durrant AJ, Hazlewood GP, Gilbert HJ (1991) Characterization of hybrid proteins consisting of the catalytic domains of Clostridium and Ruminococcus endoglucanases, fused to Pseudomonas non-catalytic cellulose-binding domains. Biochem J 279: 787–792.PubMedGoogle Scholar
  209. Rasmussen MA, White BA, Hespell RB (1989) Improved assay for quantitating adherence of ruminai bacteria to cellulose. Appl Environ Microbiol 55: 2089–2091.PubMedGoogle Scholar
  210. Rasmussen MA, Hespell RB, White BA, Bothast RJ (1988) Inhibitory effects of methycellulose on cellulose degradation by Ruminococcus flavefaciens. Appl Environ Microbiol 54: 890–897.PubMedGoogle Scholar
  211. Roberton AM, Stanley RA (1982) In vitro utilization of mucin by Bacteroides fragilis. Appl Environ Microbiol 43: 325–330.PubMedGoogle Scholar
  212. Roger V, Fonty G, Komisarczuk-Bony S, Gouet P (1990) Effects of physicochemical factors on the adhesion to cellulose Avicel of ruminai bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl Environ Microbiol 56: 3081–3087.PubMedGoogle Scholar
  213. Roger V, Bemalier A, Grenet E, Fonty G, Jamot J, Gouet P (1993) Degradation of wheat straw and maize stem by a monocentric and a polycentric rumen fungi, alone or in association with rumen cellulolytic bacteria. Anim Feed Sci Technol 42: 69–82.Google Scholar
  214. Romaniec MPM, Davidson K, White BA, Hazlewood GP (1989) Cloning of Ruminococcus albus endo-ß-1, 4-glucanase and xylanase genes. Lett Appl Microbiol 9: 101–104.Google Scholar
  215. Rumbak E, Rawlings DE, Lindsey GG, Woods DR (1991a) Cloning, nucleotide sequence, and enzymatic characterization of α-amylase from the ruminai bacterium Butyrivibrio fibrisolvens H17c. J Bacteriol 173: 4203–4211.PubMedGoogle Scholar
  216. Rumbak E, Rawlings DE, Lindsey GG, Woods DR (1991b) Characterization of the Butyrivibrio fibrisolvens glgB gene, which encodes a glycogen-branching enzyme with starchclearing activity. J Bacteriol 173: 6732–6741.PubMedGoogle Scholar
  217. Russell JB (1985) Fermentation of cellodextrins by cellulolytic and non-cellulolytic rumen bacteria. Appl Environ Microbiol 49: 572–576.PubMedGoogle Scholar
  218. Russell JB, Wilson DB (1988) Potential opportunities and problems for genetically altered rumen microorganisms. J Nutr 118: 271–279.PubMedGoogle Scholar
  219. Sakai K, Tachiki T, Kumagai H, Tochikura T (1987) Hydrolysis of α-D-galactosyl oligosaccharides in soymilk by α-D-galactosidase of Bifidobacterium breve 203. Agric Biol Chem 51: 315–322.Google Scholar
  220. Sakai T (1992) Degradation of pectins. In: Winkelman G, ed. Microbial Degradation of Natural Products, pp. 58–81. New York: VCH.Google Scholar
  221. Salyers AA, O’Brien M, Kotarski SF (1982) Utilization of chondroitin sulfate by Bacteroides thetaiotaomicron growing in carbohydrate-limited continuous culture. J Bacteriol 150: 1008–1015.PubMedGoogle Scholar
  222. Salyers AA, Vercellotti JR, West SEH, Wilkins TD (1977) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33: 319–322.PubMedGoogle Scholar
  223. Sewell GW, Utt EA, Hespell RB, Mackenzie KF, Ingram LO (1989) Identification of the Butyrivibrio fibrisolvens xylosidase gene (xylB) coding region and its expression Escherichia coli. Appl Environ Microbiol 55: 306–311.PubMedGoogle Scholar
  224. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5: 9–23.PubMedGoogle Scholar
  225. Smith AC, Podolsky DK (1986) Colonic mucin glycoproteins in health and disease. In: Mendeloff A, ed. Clinics in Gastroenterology, Vol. 15, pp. 815–837. Philadelphia: W.B. Saunders.Google Scholar
  226. Smith CJ, Hespell RB (1983) Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminai bacteria. J Dairy Sci 66: 1536–1546.PubMedGoogle Scholar
  227. Smith DC, Forsberg CW (1991) α-Glucuronidase and other hemicellulase activities of Fibrobacter succinogenes S85 grown on crystalline cellulose or ball-milled barley straw. Appl Environ Microbiol 57: 3552–3557.PubMedGoogle Scholar
  228. Smith KA, Salyers AA (1991) Characterization of a neopullulanase and an α-glucosidase from Bacteroides thetaiotaomicron 95-1. J Bacteriol 173: 2962–2968.PubMedGoogle Scholar
  229. Stack RJ, Hungate RE (1984) Effect of 3-phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8. Appl Environ Microbiol 48: 218–223.PubMedGoogle Scholar
  230. Stack RJ, Hungate RE, Opsahl WP (1983) Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Appl Environ Microbiol 46: 539–544.PubMedGoogle Scholar
  231. Stanton TB, Canale-Parola E (1980) Treponema bryantii sp. nov., a rumen spirochaete that interacts with cellulolytic bacteria. Arch Microbiol 127: 145–156.PubMedGoogle Scholar
  232. Stewart CS, Bryant MP (1988) The rumen bacteria. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 21–75. Barking: Elsevier Science.Google Scholar
  233. Stewart CS, Duncan SH, Richardson AJ, Backwell C, Begbie R (1992) The inhibition of fungal cellulolysis by cell-free preparations from ruminococci. FEMS Microbiol Lett 97: 83–87.Google Scholar
  234. Strobel HJ (1993a) Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminai bacterium Selenomonas ruminantium. Appl Environ Microbiol 59: 40–46.PubMedGoogle Scholar
  235. Strobel HJ (1993b) Pentose utilization and transport by the ruminai bacterium Prevotella ruminicola. Arch Microbiol 159: 465–471.PubMedGoogle Scholar
  236. Strobel HJ, Dawson KA (1993) Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens. FEMS Microbiol Lett 113: 291–296.PubMedGoogle Scholar
  237. Susmel P, Stefanon B (1993) Aspects of lignin degradation by rumen microorganisms. J Biotechnol 30: 141–148.Google Scholar
  238. Takano M, Moriyama R, Ohmiya K (1992) Structure of a ß-glucosidase gene from Ruminococcus albus and properties of the translated product. J Ferment Bioeng 73: 79–88.Google Scholar
  239. Talbott LD, Ray PM (1992) Molecular size and separability features of pea cell wall polysaccharides. Plant Physiol 98: 357–368.PubMedGoogle Scholar
  240. Tamblyn Lee JM, Hu Y, Zhu H, Cheng KJ, Krell P.J., Forsberg CW (1993) Cloning of a xylanase gene from the ruminai fungus Neocallimastix patriciarum 27 and its expression in Escherichia coli. Can J Microbiol 39: 134–139.Google Scholar
  241. Tancula E, Feldhaus MJ, Bedzyk LA, Salyers AA (1992) Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron. J Bacteriol 174: 5609–5616.PubMedGoogle Scholar
  242. Teather RM, Erfle JD (1990) DNA sequence of a Fibrobacter succinogenes mixed-linkage ß-glucanase (1, 3-1, 4-ß-D-glucan 4-glucanohydrolase) gene. J Bacteriol 172: 3837–3841.PubMedGoogle Scholar
  243. Teunissen MJ, Kets EPW, Op den Camp HJM, Huis in t Veld JHJ, Vogels GD (1992) Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch Microbiol 157: 176–182.PubMedGoogle Scholar
  244. Theodorou MK, Lowe SE, Trinci APJ (1988) Fermentative characteristics of anaerobic rumen fungi. Biosystems 21: 371.PubMedGoogle Scholar
  245. Thomson JA (1993) Molecular biology of xylan degradation. FEMS Microbiol Rev 104: 65–82.Google Scholar
  246. Thurston B, Dawson KA, Strobel HJ (1993) Cellobiose versus glucose utilization by the ruminai bacterium Ruminococcus albus. Appl Environ Microbiol 59: 2631–2637.PubMedGoogle Scholar
  247. Thurston B, Dawson KA, Strobel HJ (1994) Pentose utilization by the ruminai bacterium Ruminococcus albus. Appl Environ Microbiol 60: 1087–1092.PubMedGoogle Scholar
  248. Trinci APJ, Davies DR, Gull K, Lawrence MI, Nielsen BB, Rickers A, Theodorou MK (1994) Anaerobec fungi in herbivorous animals. Mycol Res 98: 129–152.Google Scholar
  249. Ushida K, Jouany JP, Demeyer DI (1991) Effect of presence and absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In: Tsuda T, Sasaki Y, Kawashima R, eds. Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 625–654. New York: Academic Press.Google Scholar
  250. Utt EA, Eddy CK, Keshav KF, Ingram LO (1991) Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with ß-D-xylosidase and α-L-arabinofuranosidase activities. Appl Environ Microbiol 57: 1227–1234.PubMedGoogle Scholar
  251. Valentine PJ, Arnold P, Salyers AA (1992) Cloning and partial characterization of two chromosomal loci from Bacteroides ovatus that contain genes essential for growth on guar gum. Appl Environ Microbiol 58: 1541–1548.PubMedGoogle Scholar
  252. Varel VH, Fryda SJ, Robinson IM (1984) Cellulolytic bacteria from pig large intestine. Appl Environ Microbiol 47: 219–221.PubMedGoogle Scholar
  253. Vercoe PE, Gregg K (1992) DNA sequence and transcription of an endoglucanase gene from Prevotella (Bacteroides) ruminicola AR20. Mol Gen Genet 233: 284–292.PubMedGoogle Scholar
  254. Vercoe PE, Gregg K (1995) Sequence and transcriptional analysis of an endoglucanase gene from Ruminococcus albus AR67. Anim Biotechnol 6: 59–71.Google Scholar
  255. Vercoe PE, Spight DH, White BA (1995a) Nucleotide sequence and transcriptional analysis of the cel D ß-glucanase gene from Ruminococcus flavefaciens FD-1. Can J Microbiol 41: 27–34.PubMedGoogle Scholar
  256. Vercoe PE, Finks JL, White BA (1995b) DNA sequence and transcriptional characterization of the ß-glucanase gene (cel B) from Ruminococcus flavefaciens FD-1. Can J Microbiol 41: 869–876.PubMedGoogle Scholar
  257. Wang W, Thomson JA (1990) Nucleotide sequence of the cel A gene encoding a cellodextrinase of Ruminococcus flavefaciens FD-1. Mol Gen Genet 222: 265–269.PubMedGoogle Scholar
  258. Wang W, Thomson JA (1992) Nucleotide sequence of the celA gene encoding a cellodextrinase of Ruminococcus flavefaciens FD-1. Mol Gen Genet 233: 492.Google Scholar
  259. Wang WY, Reid SJ, Thomson JA (1993) Transcriptional regulation of an endoglucanase and a cellodextrinase gene in Ruminococcus flavefaciens FD-1. J Gen Microbiol 139: 1219–1226.PubMedGoogle Scholar
  260. Wardrop AB, Bland DE (1959) The process of lignification in woody plants. In: Kratzl K, Billet G, eds. Biochemistry of Wood, pp. 92–116. New York: Pergamon.Google Scholar
  261. Ware CE, Bauchop T, Gregg K (1989) The isolation and comparison of cellulase genes from two strains of Ruminococcus albus. J Gen Microbiol 135: 921–930.PubMedGoogle Scholar
  262. Ware CE, Lachke AH, Gregg K (1990) Mode of action and substrate specificity of a purified exo-1, 4-ß-D-glucosidase cloned from the cellulolytic bacterium Ruminococcus albus AR67. Biochem Biophys Res Commun 171: 777–786.PubMedGoogle Scholar
  263. Watanabe Y, Moriyama R, Matsuda T, Shimizu S, Ohmiya K (1992) Purification and properties of the endo-1, 4-ß-glucanase III from Ruminococcus albus. J Ferment Bioeng 73: 54–57.Google Scholar
  264. Weimer PJ (1993) Effects of dilution rate and pH on the ruminai cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch Microbiol 160: 288–294.PubMedGoogle Scholar
  265. White BA, Clarke JH, Doerner KC, et al. (1990) Improving cellulase activity in Ruminococcus through genetic modification. In: Akin DE, Ljungdahl LG, Wilson JR, Harris PJ, eds. Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 389–400. New York: Elsevier Scientific.Google Scholar
  266. White BA, Attwood GT, Vercoe PE, Mackie RI (1993a) Regulation of ß-glucanase expression in Ruminococcus. In: Shimada K, Ohmiya K, Kobayashi Y, Hoshino S, Sakka K, Karita S, eds. Genetics, Biochemistry and Ecology of Lignocellulose Degradation, pp. 155–165. Tokyo: Japan.Google Scholar
  267. White BA, Mackie RI, Doerner KC (1993b) Enzymatic hydrolysis of forage cell walls. In: Jung HG, Buxton DR, Hatfield RD, eds. Forage Cell Wall Structure and Digestibility. Madison: American Society of AgronomyGoogle Scholar
  268. Whitehead TR, Cotta MA, Hespell RB (1991) Introduction of Bacteroides ruminicola xylanase gene into the Bacteroides thetaiotaomicron chromosome for production of xylanase activity. Appl Environ Microbiol 57: 277–282.PubMedGoogle Scholar
  269. Whitehead TR (1993) Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides)-ruminicola 23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria. Curr Microbiol 27: 27–33.PubMedGoogle Scholar
  270. Williams AG, Orpin CG (1987a) Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. Can J Microbiol 33: 418–426.PubMedGoogle Scholar
  271. Williams AG, Orpin CG (1987b) Glycoside hydrolase enzymes present in the zoospore and vegetative growth stages of the rumen fungi Neocallimastix patriciarum, Piromonas communis, and an unidentified isolate, grown on a range of carbohydrates. Can J Microbiol 33: 427–434.PubMedGoogle Scholar
  272. Williams AG, Withers SE (1982a) The effect of carbohydrate growth substrates on the glycosidase activity of hemicellulose-degrading rumen bacterial isolates. J Appl Bacteriol 52: 389–401.Google Scholar
  273. Williams AG, Withers SE (1982b) The production of plant cell wall polysaccharide-degrading enzymes by hemicellulolytic rumen bacterial isolates grown on a range of carbohydrate substrates. J Appl Bacteriol 52: 377–387.Google Scholar
  274. Williams AG, Withers SE (1993) The regulation of xylanolytic enzyme formation by Butyrivibrio fibrisolvens NCFB 2249. Lett Appl Microbiol 14: 194–198.Google Scholar
  275. Williams AG, Withers SE, Coleman GS (1984) Glycoside hydrolases of rumen bacteria and protozoa. Curr Microbiol 10: 287–294.Google Scholar
  276. Williams AG, Ellis AB, Coleman GS (1986) Subcellular distribution of polysaccharide depolymerase and glycoside hydrolase enzymes in rumen ciliate protozoa. Curr Microbiol 13: 139–147.Google Scholar
  277. Williams AG, Withers SE, Orpin CG (1994) Effect of the carbohydrate growth substrate on polysaccharolytic enzyme formation by anaerobic fungi isolated from the foregut and hindgut of nonruminant herbivores and the forestomach of ruminants. Lett Appl Microbiol 18: 147–151.Google Scholar
  278. Wilson CA, Wood TM (1992a) The anaerobic fungus Neocallimastix frontalis — Isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 37: 125–129.Google Scholar
  279. Wilson CA, Wood TM (1992b) Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose. Enzyme Microb Technol 14: 258–264.Google Scholar
  280. Wilson JR (1993) Organization of forage plant tissues. In: Jung HG, Buxton DR, Hatfield RD, Ralph J, eds. Forage Cell Wall Structure and Digestibility, pp. 1–32. Madison: American Society of Agronomy.Google Scholar
  281. Wilson WD, Barwick JM, Lomax JA, Jarvis MC, Duncan HJ (1988) Lignified and non-lignified cell walls from kale. Plant Sci 57: 83–90.Google Scholar
  282. Wilson WD, Jarvis MC, Duncan HJ (1989) In vitro digestibility of kale (Brassica oleracea) secondary xylem and parenchyma cell walls and their polysaccharide components. J Sci Food Agric 49: 9–14.Google Scholar
  283. Wojciechowicz M (1972) Comparison of the action of Bacteroides ruminicola polyga-lacturonic lyase and of pectinase on lower oligogalacturonides. Acta Microbiol Pol Ser A 4: 189–195.Google Scholar
  284. Wojciechowicz M, Ziolecki A (1979) Pectinolytic enzymes of large rumen treponemes. Appl Environ Microbiol 37: 136–142.PubMedGoogle Scholar
  285. Wojciechowicz M, Heinrichova K, Ziolecki A (1980) A polygalacturonate lyase produced by Lachnospira multiparus isolated from the bovine rumen. J Gen Microbiol 117: 193–199.PubMedGoogle Scholar
  286. Wojciechowicz M, Heinrichova K, Ziolecki A (1982) An exopectate lyase of Butyrivibrio fibrisolvens from the bovine rumen. J Gen Microbiol 128: 2661–2665.PubMedGoogle Scholar
  287. Wood TM (1992) Fungal cellulases. Biochem Soc Trans 20: 46–53.PubMedGoogle Scholar
  288. Wood TM, Wilson CA (1984) Some properties of the endo-(1-4)-ß-D-glucanase synthesized by the anaerobic cellulolytic bacterium Ruminococcus albus. Can J Microbiol 30: 316–321.Google Scholar
  289. Wood TM, Wilson CA, McCrae SI (1994) Synergism between components of the cellulase system of the anaerobic rumen fungus Neocallimastix frontalis and those of the aerobic fungi Penicillium pinophilum and Trichoderma koningii in degrading crystalline cellulose. Appl Microbiol Biotechnol 41: 257–261.Google Scholar
  290. Wood TM, Wilson CA, Stewart CS (1982) Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochem J 205: 129–137.PubMedGoogle Scholar
  291. Wood TM, Wilson CA, McCrae SI, Joblin KN (1986) A highly active extracellular cellulase from the anaerobic ruminai fungus Neocallimastix frontalis. FEMS Microbiol Lett 34: 37–40.Google Scholar
  292. Wu JHD, Orme-Johnson WH, Demain AL (1988) Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27: 1703–1709.Google Scholar
  293. Wubah DA, Akin DE, Borneman WS (1993) Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi. Crit Rev Microbiol 19: 99–115.PubMedGoogle Scholar
  294. Xue GP, Gobius KS, Orpin CG (1992a) A novel polysaccharide hydrolase cDNA (celD) from Neocallimastix patriciarum encoding 3 multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities. J Gen Microbiol 138: 2397–2403.PubMedGoogle Scholar
  295. Xue GP, Orpin CG, Gobius KS, Aylward JH, Simpson GD (1992b) Cloning and expression of multiple cellulase cDNAs from the anaerobic rumen fungus Neocallimastix patriciarum in Escherichia coli. J Gen Microbiol 138: 1413–1420.PubMedGoogle Scholar
  296. Yu I, Hungate RE (1979) The extracellular cellulases of Ruminococcus albus. Ann Rech Vet 10: 251–254.PubMedGoogle Scholar
  297. Zhang JX, Flint HJ (1992) A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Mol Microbiol 6: 1013–1023.PubMedGoogle Scholar
  298. Zhang JX, Martin J, Flint HJ (1994) Identification of non-catalytic conserved regions in xylanases encoded by the xyn B and xyn D genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet 245: 260–264.PubMedGoogle Scholar
  299. Zhou LQ, Xue GP, Orpin CG, Black GW, Gilbert HJ, Hazlewood GP (1994) Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J 297: 359–364.PubMedGoogle Scholar
  300. Zhu H, Cheng K-J, Forsberg CW (1994a) A truncated ß-xylosdiase from the anaerobic fungus Neocallimastix patriciarum 27. Can J Microbiol 40: 484–490.Google Scholar
  301. Zhu H, Paradis FW, Krell PJ, Phillips JP, Forsberg CW (1994b) Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J Bacteriol 176: 3885–3894.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Cecil W. Forsberg
  • K.-J. Cheng
  • Bryan A. White

There are no affiliations available

Personalised recommendations