Skip to main content

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 2))

Abstract

Inorganic scintillators may well be the least well understood of all wide-gap luminescent materials. Despite a long and venerable history, the phenomenon of scintillation has not been the beneficiary of any unifying comprehensive theoretical support, nor have scintillator materials shown any consistent systematics. Nevertheless, such materials have found wide use in such diverse technological areas as medical radiology (PET), high-energy physics, nondestructive testing, and transportation security, and are becoming even more ubiquitous with each passing year.

In this chapter, we shall attempt to provide a coherent picture of the present state of understanding of the scintillation process and the crystalline materials that manifest it. The basic steps in the process will be described, along with an approach for evaluating them. The performance of a number of widely used materials will be quantified using this model, and the general state-of-the-art will be concisely summarized. Finally, we shall identify a number of vital issues that remain to be solved, and, hopefully, alert the broad and talented luminescence community to the challenges and opportunities lying on their doorstep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kröger F. A., 1948: Some Aspects of the Luminescence of Solids, Elsevier Publishing Company Inc., New York NY, USA; Pringsheim P., 1949: Fluorescence and Phosphorescence, Interscience Publishers Inc., New York NY, USA.

    Google Scholar 

  2. Blasse G. and Grabmaier B. G, 1994: Luminescent Materials, Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  3. Birks J. B., 1964: The Theory and Practice of Scintillation Counting, Perga-mon Press, Oxford, England, UK.

    Google Scholar 

  4. Knoll G. F., 1989: Radiation Detection and Measurement, John Wiley & Sons, New York NY, USA.

    Google Scholar 

  5. Poulain M., 1995: “Multicomponent Fluoride Systems for Scintillator Glasses”, presented at the Conference of the “Crystal Clear” Collaboration, (Geneva, Switzerland, May 1995); Dumbaugh W., 1986: “Heavy-Metal Oxide Glasses Containing Bi2O3”, Phys. Chem. Glasses 27, pp. 119-123.

    Google Scholar 

  6. New Grolier Multimedia Encyclopedia, Release 6, Version 6.0, 1993. Grolier Inc., New York NY, USA.

    Google Scholar 

  7. Bushong S. C., 1975: Radiologic Science for Technologists, C. V. Mosby, St. Louis MO, USA.

    Google Scholar 

  8. Rutherford E., Chadwick J., and Ellis C. D., 1930: Radiations from Radioactive Substances, Cambridge University Press, Cambridge, England, UK.

    Google Scholar 

  9. Hofstadter R., 1948: “Alkali Halide Scintillation Counters”, Phys. Rev. 74, pp. 100–104.

    Article  CAS  Google Scholar 

  10. Menefee J., Swinehart C. F., and O’Dell E. W., 1967: “Calcium Fluoride as an X-Ray and Charged Particle Detector”, IEEE Trans. Nucl. Sci. NS-14, pp. 720–724.

    Google Scholar 

  11. Farukhi M. R. and Swinehart C. F., 1971: “Barium Fluoride as a Gamma Ray and Charged Particle Detector”, IEEE Trans. Nucl. Sci. NS-18, pp. 200–204.

    Article  Google Scholar 

  12. Weber M. J. and Monchamp R. R., 1973: “Luminescence of Bi4Ge3O12: Spectral and Decay Properties”, J. Appl. Phys. 44, pp. 5495–5499.

    Article  CAS  Google Scholar 

  13. Cho Z. H. and Farukhi M. R., 1977: “Bismuth Germanate as a Potential Scintillator Detector in Positron Cameras”, J. Nucl. Med. 18, pp. 840–844.

    CAS  Google Scholar 

  14. Adeva B. et al. (L3 Collaboration), 1990: “The Construction of the L3 Experiment”, Nucl. Instr. & Meth. A289, pp. 35–102.

    CAS  Google Scholar 

  15. Newman H., 1993: “Precision Crystal Electromagnetic Calorimeters at High Energy Accelerators and Colliders”, Heavy Scintillator s for Scientific and Industrial Applications, Proc. Crystal 2000 Int’l. Workshop (Chamonix, France, Sept. 1992). Editors: DeNotaristefani F., Lecoq P., and Schneegans M., Editions Frontieres, Gifsur-Yvette, France, pp. 5–32; Lecoq P., 1994: “The High Energy Physics Demand for a New Generation of Scintillators”, J. Lumin. 60/61, pp. 948-955.

    Google Scholar 

  16. Melcher C. L., 1989: “Scintillators for Well Logging Applications”, Nucl. Instr. & Meth. B40/41, pp. 1214–1218.

    Google Scholar 

  17. Goldberg M. B., 1993: “Applications of Scintillators in Security Inspection Systems”, Heavy Scintillators for Scientific & Indu striai Applications, Proc. Crystal 2000 Int’l. Workshop (Chamonix, France, Sept. 1992). Editors: DeNotaristefani F., Lecoq P., and Schneegans M., Editions Frontieres, Gif-sur-Yvette, France, pp. 137–150.

    Google Scholar 

  18. Autrata E., Schauer P., Kvapil Ji., and Kvapil Jo., 1983: “A Single Crystal of YA103:Ce as a Fast Scintillator in SEM”, Scanning 5, pp. 91–96; Baryshevsky V. G., Korzhik M. V., Moroz V. I., Pavlenko V. B., and Fyodorov A. A., 1991: “YAlO3:Ce: Fast-Acting Scintillators for Detection of Ionizing Radiation”, Nucl. Instr. & Meth. B58, pp. 291-2

    Article  CAS  Google Scholar 

  19. Laval M., Moszynski M., Allemand R., Connoreche E., Guiner P., Odru R., and Vacher J., 1983: “Barium Fluoride — Inorganic Scintillator for Subnanosecond Timing”, Nucl Instr. & Meth. 206, pp. 169–175.

    Article  CAS  Google Scholar 

  20. van Eijk C. W. E., 1994: “Crossluminescence”, J. Lumin. 60&1, pp. 936–941.

    Article  Google Scholar 

  21. Takagi K. and Fukazawa T., 1983: “Cerium-Activated Gd2SiO5 Single Crystal Scintillator”; Appl. Phys. Lett. 42, pp. 43–45; Ishibashi H., Shimizu K., Susa K., and Kubota S., 1989: “Cerium Doped GSO Scintillators and its Application to Position Sensitive Detectors”, IEEE Trans. Nucl. Sci. 36, pp. 170-1

    Article  CAS  Google Scholar 

  22. Anderson D. F., 1989: “Properties of the High-Density Scintillator Cerium Fluoride”, IEEE Trans. Nucl. Sci. 36, pp. 137–139.

    Article  CAS  Google Scholar 

  23. Moses W. W. and Derenzo S. E., 1989: “Cerium Fluoride, A New, Fast, Heavy Scintillator”, IEEE Trans. Nucl. Sci. 36, pp. 173–176.

    Article  CAS  Google Scholar 

  24. Melcher C. L. and Schweitzer J. S., 1992: “Cerium-Doped Lutetium Oxyortho-silicate: A Fast Efficient New Scintillator”, IEEE Trans. Nucl. Sci. 39, pp. 502–505.

    Article  CAS  Google Scholar 

  25. Lempicki A., Berman E., Wojtowicz A. J., Balcerzyk M., and Boatner L. A., 1993: “Cerium-Doped Orthophosphates: New Promising Scimillators”, IEEE Trans. Nucl. Sci. 40, pp. 384–387.

    Article  CAS  Google Scholar 

  26. Lempicki A., Randies M. H., Wisniewski D., Balcerzyk M., Brecher C., and Wojtowicz A. J., 1995: “LuAlO3:Ce and Other Aluminate Scintillators”, IEEE Trans. Nucl. Sci. 42, pp. 280–284.

    Article  CAS  Google Scholar 

  27. Lempicki A., Wojtowicz A. J., and Berman E., 1993: “Fundamental Limits of Scintillation Performance”, Nucl. Instr. & Meth. A333, pp. 304–311.

    Google Scholar 

  28. Shockley W., 1961: “Problems Related to p-n Junctions in Silicon”. Solid State Electronics 2, pp. 35–67.

    Article  Google Scholar 

  29. van Roosbroeck W., 1965: “Theory of the Yield and Fano Factor of Electron-Hole Pairs Generated in Semiconductors by High-Energy Particles” Phys. Rev. A 139, pp. 1702–1716.

    Google Scholar 

  30. Klein C. A., 1968: “Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors”, J. Appl. Phys. 39, pp. 2029–2038.

    Article  CAS  Google Scholar 

  31. Robbins D. J., 1980: “On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation”, J. Electrochem. Soc. 127, pp. 2694–2702.

    Article  CAS  Google Scholar 

  32. Rothwarf A., 1973: “Plasmon Theory of Electron-Hole Pair Production: Efficiency of Cathode Ray Phosphors”, J. Appl. Phys. 44, pp. 752–756.

    Article  CAS  Google Scholar 

  33. Rodnyi P. A., Dorenbos P., and van Eijk C. W. E., 1994: “Creation of Electron-Hole Pairs in Inorganic Scintillators”, Scintillator and Phosphor Materials, MRS Symp. Proc. (San Francisco CA, USA, April 1994). Editors: Weber M. I, Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 379–385.

    Google Scholar 

  34. Landsberg P., 1991: Recombination in Semiconductors, Cambridge Univ. Press, Cambridge, England, UK.

    Google Scholar 

  35. Bartram R. H. (U. Connecticut), 1995: Private communication, to be published.

    Google Scholar 

  36. Alig R. C. and Bloom S., 1977: “Cathodoluminescence Efficiency”, J. Electrochem. Soc. 124, pp. 1136–1138.

    Article  CAS  Google Scholar 

  37. Kittel C., 1986: Introduction to Solid State Physics, John Wiley & Sons Inc., New York NY, USA, pp. 253–263, 310-312; Burns G., 1990. Solid State Physics, Academic Press Inc., Boston MA, USA, pp. 486-498.

    Google Scholar 

  38. Kingsley J. D. and Ludwig G. W., 1970: “The Efficiency of Cathode Ray Phosphors, I. Measurement”, J. Electrochem. Soc. 117, pp. 348–353; “The Efficiency of Cathode Ray Phosphors, II. Correlation with Other Properties”, ibid. pp. 353-3

    Article  Google Scholar 

  39. Vasil’ev A. N., 1995: “Final Stages of Inelastic Electron Scattering: Influence on Scintillator Efficiency”, SCINT95 Int’l Conf. on Inorganic Scintillators and their Applications, Delft, Netherlands, Aug. 1995. Proceedings to be published.

    Google Scholar 

  40. Holstein T., 1947: “Imprisonment of Resonance Radiation in Gases”, Phys. Rev. 72, pp. 1212–1233; Holstein T., 1951: ibid. 83, pp. 1159-1168.

    Article  CAS  Google Scholar 

  41. Batchelder J. S., Zewail A. H., and Cole T., 1986: “Luminescent Solar Concentrators 2: Theoretical Analysis of their Possible Efficiencies”, Applied Optics 20, pp. 3733–3754.

    Article  Google Scholar 

  42. Wojtowicz A. J., Balcerzyk M., Wisniewski D., and Lempicki A., 1994: “Scintillation Light Trapping and Radiation Damage in CeF3”, IEEE Trans. Nucl. Sci. 41, pp. 713–718.

    Article  CAS  Google Scholar 

  43. Sakai Y., Kawahigashi M., Minami M., Inoue T., and Hirayama S., 1989: “Deconvolution of Nonexponential Emission Decays Arising from Reabsorption of Light”, J. Lumin. 42, pp. 317–324.

    Article  CAS  Google Scholar 

  44. Henderson B. and Imbusch G. F., 1989: Optical Spectroscopy of Inorganic Solids, Oxford University Press, Oxford, England, UK.

    Google Scholar 

  45. Visser R., Dorenbos P., van Eijk C. W. E., Meijerink A., Blasse G., and den Hartog H. W., 1993: “Energy Transfer Processes Involving Different Luminescent Centers in Cerium-Doped Barium Fluoride”, J. Phys.: Cond. Matter 5, pp. 1659–1680.

    Article  CAS  Google Scholar 

  46. Wanmaker W. L., Bril A., terVrgut J. W., and Broos J., 1966: “Luminescent Properties of Eu-Activated Phosphors of the Type AiiiBvO4”, Philips Res. Rep. 21, pp. 270–282.

    CAS  Google Scholar 

  47. Davidov A. S., 1968: “The Radiationless Transfer of Energy of Electronic Excitation Between Impurity Molecules in Crystals”, Phys. Stat. Sol. 30, pp. 357–366.

    Article  Google Scholar 

  48. Nettle S. and Lempicki A., 1979: “Resonant Energy Transfer in Stoichiometric Rare Earth Compounds”, Opt. Comm. 30, pp. 387–390.

    Article  Google Scholar 

  49. Williams F., 1966: Luminescence in Inorganic Solids. Editor: Goldberg P., Academic Press, Inc., New York NY, USA.

    Google Scholar 

  50. Wojtowicz A. J., 1995: “Scintillation Mechanism: The Significance of Variable Valence and Electron-Lattice Coupling in R.E.-Activated Scintillators”, SCINT95 Int’l Conf. on Inorganic Scintillators and their Applications, Delft, Netherlands, Aug. 1995. Proceedings to be published.

    Google Scholar 

  51. Murray R. B., 1975: “Energy Transfer in Alkali Halide Scintillators by Electron-Hole Diffusion and Capture”, IEEE Trans. Nucl. Sci. 22, pp. 54–57.

    Article  Google Scholar 

  52. Kaufman R. G., Hadley W. B., and Hersh H. N., 1970: “The Scintillation Mechanism in Thallium-Doped Alkali Halides”, IEEE Trans. Nucl. Sci. 17, pp. 82–88.

    Article  CAS  Google Scholar 

  53. Kaufman R. G. and Hadley W. B., 1966: “Luminescence Processes Generated by Ionizing Radiation in KI and KI:T1”, J. Chem. Phys. 44, pp. 1311–1317.

    Article  CAS  Google Scholar 

  54. Kaufman R. G. and Hadley W. B., 1967: “Excitation of Luminescence from KI:T1 at 5 K”, J. Chem. Phys. 46, pp. 1598–1601.

    Article  CAS  Google Scholar 

  55. Mayer A. and Murray R. B., 1960: “Effect of Energetic Secondary Electrons on the Scintillation Process in Alkali Halide Crystals”, Phys. Rev. 128, pp. 98–105.

    Article  Google Scholar 

  56. Dietrich H. B., Purdy A. E., Murray R. B., and Williams R. T., 1973: “Kinetics of Self-Trapped Holes in Alkali Halide Crystals: Experiments in NaI (T1) and KI(T1)”, Phys. Rev. B 8, pp. 5894–5901.

    Article  CAS  Google Scholar 

  57. HadleyW.B., Policks., Kaufman R.G., and HershH. N., 1966: “Energy Storage and Luminescence in KI:T1 at Low Temperatures”, J. Chem. Phys. 45, pp. 2040–2048.

    Article  Google Scholar 

  58. van Sciver W. J., 1960: “Fluorescence and Reflection Spectra of NaI Single Crystals”, Phys. Rev. 120, pp. 1193–1205.

    Article  Google Scholar 

  59. Song K. S. and Williams R. T., 1993: Self-Trapped Excitons, Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  60. Schotanus P., Stam G., Gerritse E., Utts B., and Briaux B., 1992: Scintillation Detectors, Harshaw QS Catalog.

    Google Scholar 

  61. Dietrich H. B. and Murray R. B., 1972: “Kinetics of the Diffusion of Self-Trapped Holes in Alkali Halide Scintillators”, J. Lumin. 5, pp. 155–170.

    Article  CAS  Google Scholar 

  62. Delbecq C. J., Gibson A., and Yuster P. H., 1966: “Trapping and Annihilation of Electrons and Positive Holes in KC1-T1C1”, Phys. Rev. 151, pp. 599–609.

    Article  CAS  Google Scholar 

  63. Creuzburg M. and Raether H., 1964: “Behavior of Nuclear Energy Losses of Electrons in Alkali Halides”, Solid State Comm. 2, pp. 175–177.

    Article  CAS  Google Scholar 

  64. Koepke Cz., Lempicki A., and Wojtowicz A. J., 1993: “Luminescence Quenching in Strongly Coupled Systems”, Phys. Stat. Sol. (b) 179, pp. 233–240.

    Article  CAS  Google Scholar 

  65. Tirsell K. G., Tripp G. R., Lent E. M., Lerche R. A., Cheng J. C., Harker L. P., and Lyons P. B., 1977: “Subnanosecond Plastic Scintillator Time Response Studies Using Laser-Produced X-Ray Pulsed Excitation”, IEEE Trans. Nucl. Sci. NS-24, pp. 250–254.

    Article  Google Scholar 

  66. Blasse G., 1993: “Luminescence and Scintillation Mechanisms in Inorganic Scintillators”, Heavy Scintillators for. Scientific and Industrial Applications, Proc. Crystal 2000 Int’l Workshop (Chamonix, France, Sept. 1992). Editors: DeNotaristefani F., Lecoq P., and Schneegans M., Editions Frontieres, Gif-sur-Yvette, France, pp. 85–97.

    Google Scholar 

  67. Lempicki A. and Wojtowicz A. J., 1993: “New Trends in Scintillator Research”, Conference Record, IEEE Nucl. Sci. Symp. & Med. Imag. Conf. (San Francisco CA, USA, Nov. 1993). Editor: Klaisner L. A., IEEE, Piscataway NJ, USA, pp. 71–75.

    Chapter  Google Scholar 

  68. Lempicki A. and Wojtowicz A. J., 1994: “Fundamental Limitations of Scintillators”, J. Lumin. 60&61, pp. 942–947.

    Article  Google Scholar 

  69. Wojtowicz A. J., Balcerzyk M., Berman E., and Lempicki A., 1994: “Optical Spectroscopy and Scintillation Mechanisms of CexLa1-xF3”, Phys. Rev. B 49, pp.14880–14894.

    Article  CAS  Google Scholar 

  70. Wojtowicz A. J., Berman E., and Lempicki A., 1992: “Stoichiometric Cerium Compounds as Scintillators, II. CeP5O14”, IEEE Trans. Nucl. Sci. 39, pp. 1542–1548.

    Article  CAS  Google Scholar 

  71. Ishii M. and Kobayashi M., 1992: “Single Crystals for Radiation Detectors”, Prog. Cryst. Growth & Char. Mat’ls. 23, pp. 245–311.

    Article  CAS  Google Scholar 

  72. Holl I., Lorenz E., and Mageras G., 1988: “A Measurement of the Light Output of Common Inorganic Scintillators”, IEEE Trans. Nucl. Sci. 35, pp. 105–109.

    Article  CAS  Google Scholar 

  73. Melcher C. L. (Schlumberger Corp.), 1994: Private communication.

    Google Scholar 

  74. Sakai E., 1987: “Recent Measurements on Scintillator-Photodiode Systems”, IEEE Trans. Nucl. Sci. 34, pp. 418–422.

    Article  Google Scholar 

  75. Butler K., 1980: Fluorescent Lamp Phosphors, Pennsylvania State Univ. Press, University Park PA, USA.

    Google Scholar 

  76. Blasse G., 1980: “The Luminescence of Closed-Shell Transition-Metal Complexes: New Developments”, Structure and Bonding 42, pp. 1–41.

    Article  CAS  Google Scholar 

  77. Bumham C. A., Kaufman D. E., Chesler D. A., Chen Y., Gregoire M., and Brownell G. L., 1991: “MGH Cylindrical PET Detector Characteristics”, Conference Record, IEEE Nucl. Sci. Symp. & Med. Imag. Conf. (Santa Fe NM, USA, Nov. 1991), pp. 1644-1647.

    Google Scholar 

  78. Ivanov V. Y., Kruzhalov A. V., Pustovarov V. A., and Petrov V. L., 1987: “Electron Excitation and Luminescence in Bismuth Germanium Oxide (Bi4Ge3O12) and Bismuth Silicon Oxide (Bi4Si3O12) Crystals”, Nucl. Instr. & Meth. A261, pp. 150–152.

    CAS  Google Scholar 

  79. Hahn B., 1953: “Scintillations Produced by a-Particles in CsI”, Phys. Rev. 91, pp. 772–773.

    Article  CAS  Google Scholar 

  80. Utts B. K. and Spagno S. E., 1990: “An Investigation on the Characteristics of Pure CsI Crystals”, IEEE Trans. Nucl. Sci. 37, pp. 134–138.

    Article  CAS  Google Scholar 

  81. Woody C. L., Levy P. W., Kierstead J. A., Skwarnicki T., Sobolewski Z., Goldberg M., Horwitz N., Sounder P., and Anderson D. F., 1990: “Readout Techniques and Radiation Damage of Undoped Cesium Iodide”, IEEE Trans. Nucl. Sci. 37, pp. 492–499.

    Article  CAS  Google Scholar 

  82. Kirk F. W. K., 1990: “A Comparative Study of the Scintillation Response of Natural Crystals of Anglesite (PbSO4) And Cerussite (PbCO3)”, Nucl. Instr. & Meth. A297, pp. 532–533.

    Google Scholar 

  83. Moses W. W., Derenzo S. E., and Shlichta P. J., 1992: “Scintillation Properties of Lead Sulfate”; IEEE Trans. Nucl. Sci. 39, pp. 1190–1194.

    Article  CAS  Google Scholar 

  84. Zhang J. C., Lund J. C., Cirignano L., Shah K. S., Squillante M. R., and Moses W. W., 1993: “Lead Sulfate Scintillator Crystal Growth for PET Applications” Conference Record, IEEE Nucl. Sci. Symp. & Med. Imag. Conf. (San Francisco CA, USA, Nov. 1993). Editor: Klaisner L. A., IEEE, Piscataway NJ, USA. pp. 76–80.

    Google Scholar 

  85. Blasse G., 1991: “Search for New Inorganic Scintillators”, IEEE Trans. Nucl. Sci. 38, pp. 30–31.

    Article  CAS  Google Scholar 

  86. Dafinei L., Auffray E., Lecoq P., and Schneegans M., 1992: “Lead Tungstate for High Energy Calorimetry”, Heavy Scintillators for Scientific and Industrial Applications, Proc. Crystal 2000 Int’l. Workshop (Chamonix, France, Sept. 1992). Editors: DeNotaristefani F., Lecoq P., and Schneegans M., Editions Frontieres, Gifsur-Yvette, France, pp. 99–104; Korzhik M. V., Pavlenko V. B., Katchanov V. A., Peigneux J.-P., and Poulet M., 1992: “The Scintillation Mechanism in PbWO4ibid., pp. 285-290.

    Google Scholar 

  87. Nagomaya L. and Ryzhikov V., 1992: “Fast Scintillators Based on Large “Heavy” Tungstate Single Crystals”, Heavy Scintillators for Scientific and Industrial Applications, Proc. Crystal 2000 Int’l. Workshop (Chamonix, France, Sept. 1992). Editors: DeNotaristefani F., Lecoq P., and Schneegans M., Editions Frontieres, Gifsur-Yvette, France, pp. 367–374; Kobayashi M., Ishii M., Usuki Y., and Yahagi H., 1993: “PbWO4 Scintillator at Room Temperature”, ibid. pp. 375-379; Miassoedov L. V., Selivanov V., Sinitsin I., Torokhov V. D., Nagornaya L. L., Vostresov Y. Ia., and Tupitsina I. A., 1993: “PbWO4: A Heavy, Fast and Radiation Resistant Scintillator for EM Calorimetry”, ibid., pp. 438-442.

    Google Scholar 

  88. Ershov N. N., Zakharov N. G., and Rodnyi P., 1982: “Spectral-Kinetic Study of Intrinsic Luminescence Characteristics of Fluorite-Type Crystals”; Opt. Spectrosc. 53, pp. 51–54.

    Google Scholar 

  89. Valbis J. A., Rachko Z. A., and Yanson Ya. L., 1988: “Crossluminescence of KF and Related Compounds”, Solid State Comm. 67, pp. 183–185.

    Article  Google Scholar 

  90. Rodnyi P. A., 1994: “Choice of Compounds with Fast Core-Valence Transitions”, Scintillator and Phosphor Materials, MRS Symp. (San Francisco CA, USA, April 1994). Editors: Weber M. J., Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 77–88.

    Google Scholar 

  91. Rodnyi P. A., 1992: “Core-Valence Band Transitions in Wide-Gap Ionic Crystals”, Sov. Phys. Sol. State 34, pp. 1053–1066.

    Google Scholar 

  92. Woody C. L., 1991: “A Report on Radiation Damage in Barium Fluoride to the GEM Collaboration”, Physics Dept., Brookhaven National Laboratory, Upton, NY, USA.

    Google Scholar 

  93. Visser R., Dorenbos P., van Eijk C. W. E, and den Hartog H. W., 1992: “Energy Transfer Processes Observed in The Scintillation Decay of Lanthanum-Doped Barium Fluoride”, J. Phys.: Cond. Matter 4, pp. 8801–8812.

    Article  CAS  Google Scholar 

  94. Williams G. M., Edelstein R, Boatner L. A., and Abraham M. M., 1989: “Intensities of Electronic Raman Scattering Between Crystal Field Levels of Ce3+ in LuPO4: Nonresonant and Near-Resonant Excitation”, Phys. Rev. B 40, pp. 4143–4152.

    Article  CAS  Google Scholar 

  95. Brewer L., 1972: “Energies of Electronic Configurations of Singly, Doubly, and Triply Ionized Lanthanides and Actinides”, J. Opt. Soc. Am. 61, pp. 1666–1686.

    Article  Google Scholar 

  96. Dieke G. H., 1968: Spectra and Energy Levels of Rare Earth Ions in Solids, Interscience Publishers, Inc., New York NY, USA.

    Google Scholar 

  97. Weber H. P., 1975: “Neodymium Pentaphosphate Lasers”, Optical and Quantum Electronics 7, 431–442.

    Article  CAS  Google Scholar 

  98. Bimberg D., Robbins D. J., Wight D. R., and Jesser J. P., 1975: “Cerium Phosphate (CeP5O14): A New Ultrafast Scintillator”, Appl. Phys. Lett. 27, pp. 66–68.

    Article  Google Scholar 

  99. Wojtowicz A. J., Lempicki A., and Berman E., 1993: “Scintillation Mechanisms in Stoichiometric Cerium Compounds”, Heavy Scintillator s for Scientific and Industrial Applications, Proc. Crystal 2000 Int’l. Workshop (Chamonix, France, Sept. 1992). Editors: DeNotaristefani F., Lecoq P., and Schneegans M., Editions Frontieres, Gif-sur-Yvette, France, pp. 179–183.

    Google Scholar 

  100. Wojtowicz A. J., Berman E., Koepke Cz., and Lempicki A., 1991: “Stoicbiometric Cerium Compounds as Scintillators, I: CeF3”, IEEE Trans. Nucl. Sci. 39, pp. 494–501.

    Article  Google Scholar 

  101. Pedrini C., Moine B., Gacon J. C., and Jacquier B., 1992: “One-and Two-Photon Spectroscopy of Ce3+ Ions in LaF3-CeF3”, J. Phys.: Cond. Matter 4, pp. 5461–5470.

    Article  CAS  Google Scholar 

  102. Lecoq P., 1992: “Results on New Scintillating Crystals from the “Crystal Clear” Collaboration”, Conference Record, IEEE Nucl. Sci. Sytnp. & Med. Imag. Conf. (Orlando FL, USA, Oct. 1992). Editor: Kirsten F. A., IEEE Inc., Piscataway, 1992, pp. 248–250; Dafinei I., Auffray E., Dezillie B., Lecoq P., Schussler M., Ferrere D., and Schneegans M., 1993: “Radiation Damage Studies on CeF3 Crystals by the “Crystal Clear” Collaboration”, Heavy Scintillators for Scientific and Industrial Applications, Proc. Crystal 2000 Int’l. Workshop (Chamonix, France, Sept. 1992). Editors: DeNotaristefani F., Lecoq P., and Schneegans M., Editions Frontieres, Gif-sur-Yvette, France, pp. 459-466.

    Chapter  Google Scholar 

  103. Optovac Corp., North Brookfield MA, USA.

    Google Scholar 

  104. Roos A., Buijs M., Wappenar K. E. D., and Schoonman J., 1985: “Dielectric Relaxation Properties of Tysonite-Type Solid Solutions La1-xBaxF3-x”, J. Phys. Chem. Sol. 46, pp. 655–664.

    Article  CAS  Google Scholar 

  105. Moses W. W., Derenzo S. E., Weber M. J., Ray-Chaudhuri A. K., and Cerrina F., 1994: “Scintillation Mechanisms in Cerium Fluoride”, J. Lumin. 59, pp. 89–100.

    Article  CAS  Google Scholar 

  106. McClure D. S. and Kiss Z., 1963: “Survey of the Spectra of the Divalent Rare Earth Ions in Cubic Crystals”, J. Chem. Phys. 39, pp. 3251–3257.

    Article  CAS  Google Scholar 

  107. Pedrini C., Belsky A. N., Vasil’ev A. N., Bouttet D., Dujardin C., Moine B., Martin P., and Weber M. J., 1994: “Fluorescence Properties of CeF3 and of Some Other Cerium-Doped Crystals and Glasses under VUV and X-Ray Synchrotron Excitation”, Scintillator and Phosphor Materials, MRS Symp. Proc, (San Francisco CA, USA, April 1994). Editors: Weber M. J., Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 225–234.

    Google Scholar 

  108. Wojtowicz A. J., Lempicki A., Wisniewski D., Balcerzyk M., and Brecher C., 1995: “The Carrier Capture and Recombination Processes in Ln3+-Activated Scintillators”, IEEE Trans. Nucl. Sci.-in press.

    Google Scholar 

  109. Williams R. T., Itoh C., and Tanimura K., 1995: “Time-Resolved Optical Absorption and Luminescence in LaF3 and CeF3, Irradiated by 1-MeV, 20-ns Electron Pulses”, SCINT95 Int’l Conf. on Inorganic Scintillators and their Applications, Delft, Netherlands, Aug. 1995. Proceedings to be published.

    Google Scholar 

  110. Wojtowicz A. J., Lempicki A., Wisniewski D., Brecher C., Bartram R. H., Woody C., Levy P., Stoll S., Kierstead J., Pedrini C., Bouttet D., and Koepke Cz., “Scintillation Mechanism and Radiation Damage in CexLa1-xF3 Crystals”, Scintillator and Phosphor Materials, MRS Symp. Proc. (San Francisco CA, USA, April 1994). Editors: Weber M. J., Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 455–461.

    Google Scholar 

  111. Blasse G., 1983: “Energy Transfer from Cerium (3+) to Europium (3+) in Yttrium Gadolinium Fluoride [(Y, Gd)F3]” Phys. Stat. Sol. (a) 75, pp. K41–K43.

    Article  CAS  Google Scholar 

  112. Wojtowicz A. J., Lempicki A., Wisniewski D., and Boatner L. A., 1994: “Cerium-Doped Orthophosphate Scintillators”, Scintillator and Phosphor Materials, MRS Symp. Proc. (San Francisco CA, USA, April 1994). Editors: Weber M. J., Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 123–129.

    Google Scholar 

  113. Hitachi Chemical Co., Shimodate, Japan.

    Google Scholar 

  114. Melcher C. L., Schweitzer J. S., Utsu T., and Akiyama S., 1990: “Scintillation Properties of GSO”, IEEE. Trans. Nucl. Sci. 37, pp. 161–164.

    Article  CAS  Google Scholar 

  115. Suzuki H., Tombrello T. A., Melcher C. L., and Schweitzer J. S., 1992: “UV and Gamma-Ray Excited Luminescence of Cerium-Doped Rare-Earth Oxyorthosilicates”, Nucl. Instr. & Meth. A320, pp. 263–272.

    CAS  Google Scholar 

  116. Suzuki H., Tombrello T. A., Melcher C. L., and Schweitzer J. S., 1994. “Energy Transfer Mechanism in Gd2(SiO4)O: Ce Scintillators”, J. Lumin. 60&61, pp. 963–966.

    Article  Google Scholar 

  117. Lammers M. J. J. and Blasse G., 1987: “Luminescence of Tb3+-and Ce3+-Activated Rare Earth Silicates”, J. Electrochem. Soc. 134, pp. 2068–2072.

    Article  CAS  Google Scholar 

  118. Brandie C. D., Valentino A. J., and Berkstresser G. W., 1986: “Czochralski Growth of Rare-Earth Orthosilicates (Ln2SiO5)”, J. Cryst. Growth 78, pp. 308–315.

    Article  Google Scholar 

  119. Kobayashi M., Takamatsu K., Ide S., Mon K., Sugimoto S., Takaki H., Yuasa M., and Ishii M., 1991: “A Beam Test on a Fast EM-Calorimeter of Gadolinium Silicate, GSO(Ce)”, Nucl. Instr. & Meth. A306, pp. 139–144.

    CAS  Google Scholar 

  120. Melcher C. L. and Schweitzer J. S., 1992: “A Promising New Scintillator: Cerium-Doped Lutetium Oxyortbosilicate”, Nucl. Instr. & Meth. A314, pp. 212–214.

    CAS  Google Scholar 

  121. Ludziejewski T., Moszynska K., Moszynski M., and Wolski D., 1994. “Advantages and Limitations of LSO Scintillator in Nuclear Physics Experiments” Conference Record, IEEE Nucl. Sci. Symp. Med. Imag. Conf. (Norfolk VA, USA, Oct. 1994), pp. 299-303.

    Google Scholar 

  122. Dorenbos P., van Eijk C. W. E., Bos A. J. J., and Melcher C. L., 1994: “Scintillation and Thermoluminescence Properties of Lu2SiO5:Ce Fast Scintillation Crystals”, J. Lumin. 60&61, pp. 979–982; “Afterglow and Thermoluminescence Properties of Lu2SiO5:Ce Scintillation Crystals”, J. Phys.: Cond. Matter 6, pp. 4167-4180.

    Article  Google Scholar 

  123. Melcher C.L. (Schlumberger Corp.), 1994: Private communication

    Google Scholar 

  124. Dorenbos P., de Hass J. T. M., van Eijk C. W. E., Melcher C. L., and Schweitzer J. S., 1993: “Nonlinear Response of the Scintillation Yield of Lu2SiO5:Ce3+”, Conference Record, IEEE Nucl. Sci. Symp. & Med. Imag. Conf. (San Francisco CA, USA, Nov. 1993). Editor: Klaisner L. A., IEEE, Piscataway NJ, USA. pp. 714–716.

    Chapter  Google Scholar 

  125. Suzuki H. (Schlumberger Corp.), 1994: Private communication.

    Google Scholar 

  126. Nakazawa E. and Shiga F., 1977: “Vacuum Ultraviolet Luminescence-Excitation Spectra of RPO4:Eu3+ (R = Y, La, Gd, and Lu)”, J. Lumin. 15, pp. 255–259.

    Article  CAS  Google Scholar 

  127. Green T. E., Riley M. E., Richards P. M., Loubriel G. M., Jennison D. R., and Williams R. T., 1989: “Auger-Induced Valence Processes in Alkali Halides Following Alkali Core-Hole Creation”, Phys. Rev. B 39, pp. 5407–5413.

    Article  CAS  Google Scholar 

  128. Kaminskii A. A., 1990: Laser Crystals, Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  129. Robbins D. J., 1979: “The Effects of Crystal Field and Temperature on the Photoluminescence Excitation Efficiency of Ce3+in Y AG”, J. Electrochem. Soc. 126, pp. 1550–1555.

    Article  CAS  Google Scholar 

  130. Rotman S. R., 1992: “Defect-Property Correlations in Garnet Crystals. VI. The Electrical Conductivity, Defect Structure, and Optical Properties of Luminescent Calcium and Cerium-Doped Yttrium Aluminum Garnet”, J. Appl. Phys. 71, pp. 1209–1214.

    Article  CAS  Google Scholar 

  131. Robbins D. J., Cockayne B., Glasper J. L., and Lent B., 1979: “The Temperature Dependence of Rare-Earth Activated Garnet Phosphors”: J. Electrochem. Soc. 126, 1221–1228.

    Article  CAS  Google Scholar 

  132. Robbins D. J., Cockayne B., Lent B., Duckworth C. N., and Glasper J. L., 1979: “Investigation of Competing Recombination Processes in Rare-Earth Activated Garnet Phosphors”, Phys. Rev. B 19, pp. 1254–1269.

    Article  CAS  Google Scholar 

  133. Aizenberg G. E. and Rotman S. R., 1991: “A Nonradiative Energy Transfer Model for Cerium-Doped Garnet (Ce:YAG)” Phys. Stat. Sol. 126, pp. 263–273.

    Article  CAS  Google Scholar 

  134. Moszynski M., Ludziejewski T., Wolski D., Klamra W., and Norlin L. O., 1994: “Properties of the YAG:Ce Scintillator”, Nucl. Instr. & Meth. A345, pp. 461–467.

    Google Scholar 

  135. Andreissen J., Dorenbos P., and van Eijk, C. W. E., 1994: “Calculation of Energy Levels of Cerium in Inorganic Scintillator Crystals”, Scintillator and Phosphor Materials, MRS Symp. Proc., (San Francisco CA, USA, April 1994). Editors: Weber M. J., Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 355–365.

    Google Scholar 

  136. Weber M. J., 1973: “Optical Spectra of Ce3+ and Ce3+-Sensitized Fluorescence in YAlO3”, J. Appl. Phys. 44, pp. 3205–3208.

    Article  CAS  Google Scholar 

  137. Ziegler S. I., Rogers J. G., Selivanov V., and Sinitzin I., 1991: “Characteristics of the New YAlO3 Compared to BGO and GSO”, Conference Record, IEEE Nucl. Sci. Symp. & Med. Imag. Conf. (Santa Fe NM, USA, Nov. 1991), pp. 156-161.

    Google Scholar 

  138. Korzhik M. V., Misevich O. V., and Fyodorov A. A., 1992: “YA103:Ce Scintillators: Application for X-Ray and Soft γ-Ray Detection”, Nucl. Instr. & Meth. B72, pp. 499–501.

    CAS  Google Scholar 

  139. Lempicki A., Brecher C., Wisniewski D., and Zych E., 1995: “Cerium-Doped Aluminate Scintillators”, SCINT95 Int’l Conf. on Inorganic Scintillator s and their Applications, Delft, Netherlands, Aug. 1995. Proceedings to be published.

    Google Scholar 

  140. Trower W. P., 1994: “Cerium-Doped Yttrium Aluminum Perovskite (YAP): Properties of Commercial Crystals”, Scintillator and Phosphor Materials, MRS Symp. Proc. (San Francisco CA, USA, April 1994). Editors: Weber M. J., Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 131–136.

    Google Scholar 

  141. Trower W. P., 1993: “The Nitrogen Camera and the Detection of Concealed Explosives”, Nucl. Instr. & Meth. B79, pp. 589–592.

    CAS  Google Scholar 

  142. Kaminskii A. A., Ivanov A. O., Sarkisov S. E., Mochalov I. V., Fedorov V. A., and Li L., 1976: “Comprehensive Investigations of the Spectral and Lasing Characteristics Of LuAlO3 Crystal Doped with Nd3+”, Sov. Phys. JETP 44, 516–524; Kaminskii A. A. and Petrosyan A. G., 1992: “Growth and Luminescence of LuAlO3: Ti3+ Crystals”, Sov. Phys. Dokl. 37, pp. 422-4

    Google Scholar 

  143. Litton Airtron Corp., Charlotte NC, USA.

    Google Scholar 

  144. Moses W. W., Derenzo S. E., Korzhik M., Gektin A., Minkov B., and Aslanov V., 1995: “LuAlO3: Ce — A High Density, High Speed Scintillator for Gamma Detection”, IEEE Trans Nucl. Sci. 42, pp. 275–279.

    Article  CAS  Google Scholar 

  145. Bondar I. A., Shirvinskaya A. K., Popova V. F., Mochalov I. V., and Ivanov A. O., 1979: “Thermal Stability of Orthoaluminates of Rare Earth Elements of the Yttrium Subgroup”, Sov. Phys. Dokl. 24, pp. 289–292.

    Google Scholar 

  146. Gumanskaya E. G., Egorcheva O. A., Korzhik M. V., Smimova S. A., and Pavlenko E. B., 1992: “Spectroscopic Properties and Scintillation Efficiency of Ce-Doped YAlO3 Single Crystals”, Opt. Spectrosc. 72, pp. 215–217.

    Google Scholar 

  147. Baryshevsky V. G., Korzhik M. V., Minkov B. I., Smirnova S. A., Fyodorov A. A., Dorenbos P., and van Eijk C. W. E., 1993: “Spectra and Scintillation Properties of Ce-Doped YAlO3 Single Crystals”, J. Phys.: Cond. Matter 5, pp. 7893–7902.

    Article  CAS  Google Scholar 

  148. Sausville J. (Sausville Chemical Co.), 1994: Private communication.

    Google Scholar 

  149. Lee W., Bendahan J., Ryge P., and Gozani T., 1991: “Detector Selection for Nuclear-Based Explosive Detection System”, Proc. 1st Int’l. Symp. Explosive Detection Technol. (Atlantic City, NJ, Nov. 1991), pp. 225-235.

    Google Scholar 

  150. Bearden J. A. and Burr A. F., 1967: “Reevaluation of X-Ray Atomic Energy Levels”, Rev. Mod. Phys. 39, pp. 125–142.

    Article  CAS  Google Scholar 

  151. Armbruster A., 1976: “Infrared Reflection Studies on the Phosphates, Arsenates, and Vanadates of Lutetium and Yttrium”, Phys. Chem. Solids 37, pp. 321–327.

    Article  CAS  Google Scholar 

  152. Shannon R. D., 1993: “Dielectric Polarizabilities of Ions in Oxides and Fluorides”, J. Appl. Phys. 73, pp. 348–366.

    Article  CAS  Google Scholar 

  153. Halliburton L. E., and Edwards G. E., 1984: “Radiation Damage Mechanisms in Scintillator Materials: Applications to BaF2 and CeF3”, Scintillator and Phosphor Materials, MRS Symp. Proc. (San Francisco CA, USA, April 1994). Editors: Weber M. J., Lecoq P., Ruchti R. C., Woody C., Yen W. M., and Zhu R. Y. Materials Research Society, Pittsburgh PA, USA. Vol. 348, pp. 423–434.

    Google Scholar 

  154. Stokowski S. E., Saroyan R. A., and Weber M. J., 1978: Nd-Doped Laser Glass: Spectroscopic and Physical Properties, Lawrence Livermore Laboratory, Livermore CA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lempicki, A., Wojtowicz, A.J., Brecher, C. (1997). Inorganic Scintillators. In: Rotman, S.R. (eds) Wide-Gap Luminescent Materials: Theory and Applications. Electronic Materials: Science and Technology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4100-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4100-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9837-0

  • Online ISBN: 978-1-4615-4100-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics