Abstract
It has long been known that microorganisms affect the geochemistry of groundwater. But despite this recognition, little detailed information is available regarding the rates and the factors controlling microbial processes in groundwater. Part of the reason stems from the relatively inaccessible nature of most groundwater and the difficulties encountered in obtaining representative samples of groundwater and subsurface sediments. At the same time, most groundwater systems are nutrient poor or oligotrophic environments in which the resident microorganisms are severely stressed and often nearly inactive. These populations are functioning so slowly that many types of activity measurements designed to assess microbial processes in more productive environments are ineffective for groundwater. However, because groundwater is by far the largest reservoir of freshwater in the world (Freeze and Cherry 1979), our lack of knowledge about groundwater microorganisms and their processes represents a significant void in the study of microbial ecology and in our ability to predict the outcome when these reserves are compromised by contamination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aelion, C. M., and P. M. Bradley. 1991. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer. Appl. Environ. Microbiol. 57: 57–63.
Balderston, W. L., B. Sherr, and W. J. Payne. 1976. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31:504–508.
Barbaro, J. R., J. F. Barker, L. A. Lemon, and C. I. Mayfield. 1992. Biotransformation of BTEX under anaerobic denitrifying conditions: Field and laboratory observations. J. Contam. Hydrol. 11:245–272.
Barber, L. B. 1988. Dichlorobenzene in ground water. Evidence for long-term persistence. Ground Water 26:696–702.
Barber, L. B., E. M. Thurman, M. P. Schroeder, and D. R. LeBlanc. 1988. Long-term fate of organic micropollutants in sewage-contaminated groundwater. Environ. Sci. Technol. 22:205–211.
Barker, J. F., G. C. Patrick, and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Water Monit. Rev. pp. 64–71. Vol. 7#3.
Chapelle, F. H. 1993. Ground-Water Microbiology and Geochemistry. John Wiley & Sons, New York.
Chapelle, F. H., and D. R. Lovley. 1990. Rates of microbial metabolism in deep coastal plain aquifers. Appl. Environ. Microbiol. 56:1865–1874.
Darcy, H. 1856. Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris.
Davis, S. N., G. M. Thompson, H. W. Bentley, and G. Stiles. 1990. Ground water tracers: A short review. Ground Water 18:14–23.
Domenico, P. A., and F. W. Schwartz. 1990. Physical and Chemical Hydrogeology. John Wiley and Sons, New York.
Firestone, M. K. 1982. Biological denitrification. In F. J. Stevenson (ed.), Nitrogen in Agricultural Soils, pp. 289–326. American Society of Agronomy, Madison, WI.
Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ.
Garabedian, S. P., D. R. LeBlanc, L. W. Gelhar, and M. A. Celia. 1991. Large-scale natural-gradient tracer test in sand and gravel. Cape Cod, Massachusetts. 2. Analysis of spatial moments for a nonreactive tracer. Water Resour. Res. 27:911–924.
Ghiorse, W. C, and J. T. Wilson. 1988. Microbiol ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33:107–172.
Gillham, R. W., R. C. Starr, and D. J. Miller. 1990. A device for in situ determination of geochemical transport parameterdys. 2. Biochemical reactions. Ground Water 28:858–862.
Harvey, R. W. 1991. Parameters involved in modeling movement of bacteria in ground water. In C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms, pp. 89–114, American Society for Microbiology, Washington, D.C.
Harvey, R. W., and L. B. Barber. 1992. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated ground water. J. Contain. Hydrol. 9:91–103.
Harvey, R. W., and S. P. Garabedian. 1991. Use of colloid filtration theory in modeling movement of bacteria through a contaminated aquifer. Environ. Sci. Technol. 25:178–185.
Harvey, R. W., and L. H. George. 1987. Growth determinations for unattached bacteria in a contaminated aquifer. Appl. Environ. Microbiol. 53:2992–2996.
Harvey, R. W., L. H. George, R. L. Smith, and D. R. LeBlanc. 1989. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural and forced-gradient tracer tests. Environ. Sci. Technol. 23:51–56.
Harvey, R. W., R. L. Smith, and L. George. 1984. Effect of organic contamination upon microbial distribution and heterotrophic uptake in a Cape Cod, Mass., aquifer. Appl. Environ. Microbiol. 48:1197–1202.
Harvey, R. W., and M. A. Widdowson. 1992. Microbial distributions, activities, and movement in the terrestrial subsurface: Experimental and theoretical studies. In R. J. Wagenet, P. Baveye, and B. A. Stewart (eds.), Interacting Processes in Soil Science, pp. 185–225. Lewis Publishers, Ann Arbor, MI.
Hutchins, S. R., W. C. Downs, J. T. Wilson, G. B. Smith, D. A. Kovacs, D. D. Fine, R. H. Douglas, and D. J. Hendrix. 1991. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: Field demonstration. Ground Water 29:571–581.
Huyakorn, P. S., and G. F. Pinder. 1983. Computational Methods in Subsurface Flow. Academic Press, New York.
LeBlanc, D. R. 1984. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts. U.S. Geological Survey Water Supply Paper 2218. U.S. Government Printing Office, Washington, D.C.
LeBlanc, D. R., S. P. Garabedian, K. M. Hess, L. W. Gelhar, R. D. Quadri, K. G. Stollenwerk, and W. W. Wood. 1991. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 1. Experimental design and observed tracer movement. Water Resour. Res. 27:895–910.
Lyngkilde, J., and T. H. Christensen. 1993. Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contain. Hydrol. 10:273–289.
Madsen, E. L., J. L. Sinclair, and W. C. Ghiorse. 1991. In situ biodegradation: Microbiological patterns in a contaminated aquifer. Science 252:830–833.
Metge, D. W., M. H. Brooks, R. L. Smith, and R. W. Harvey. 1993. Effect of treatedsewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on Cape Cod. Appl. Environ. Microbiol. 59:2304–2310.
Phelps, T. J., C. B. Fliermans, T. R. Garland, S. M. Pfiffner, and D. C. White. 1989. Methods for recovery of deep terrestrial subsurface sediments for microbiological studies. J. Microbiol. Meth. 9:267–279.
Roberts, P. V., G. D. Hopkins, D. M. Mackay, and L. Semprini. 1990. A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 1, Methology and field site characterization. Ground Water 28:591–604.
Roberts, P. V., M. N. Golz, and D. M. Mackay. 1986. A natural gradient experiment on solute transport in a sand aquifer. 3. Retardation estimates and mass balances for organic solutes. Water Resour. Res. 22:2047–2058.
Roberts, P. V., L. Semprini, G. D. Hopkins, D. Grbic-Galic, P. L. McCarty, and M. Reinhard. 1989. In-situ aquifer restoration of chlorinated aliphatics by methanotrophic bacteria. EPA Res. Dev. 600:1–7.
Semprini, L., P. V. Roberts, G. D. Hopkins, and P. L. McCarty. 1990. A field evaluation of iin-situ biodegradation of chlorinated ethenes: Part 2, Results of biostimulation and biotransformation experiments. Ground Water 28:715–727.
Smith, R. L., S. P. Garbedian, and M. H. Brooks. 1996. Comparison of denitrification activity measurements in ground water using cores and natural gradient tracer tests. Environ. Sci. Technol. 30:34–48.
Smith, R. L., and J. H. Duff. 1988. Denitrification in a sand and gravel aquifer. Appl. Environ. Microbiol. 54:1071–1078.
Smith, R. L., R. W. Harvey, and D. R. LeBlanc. 1991. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in ground water studies. J. Contam. Hydrol. 7:285–300.
Smith, R. L., B. L. Howes, and J. H. Duff. 1991. Denitrification in nitrate-contaminated ground water: Occurrence in steep vertical geochemical gradients. Geochim. Cosmochim. Acta 55:1815–1825.
Smith, R. L., B. L. Howes, and S. P. Garabedian. 1991. In situ measurement of methane oxidation in ground water by using natural-gradient tracer tests. Appl. Environ. Microbiol. 57:1997–2004.
Thorn, P. M. and R. M. Ventullo. 1988. Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA. Microb. Ecol. 16:3–16.
Thurman, E. M. 1985. Organic Geochemistry of Natural Waters. Nijhoff-Junk, Publishers, Boston, MA.
Trudell, M. R., R. W. Gillham, and J. A. Cherry. 1986. An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand squifer. J. Hydrol. 83:251–268.
Wilson, J. T., and B. H. Wilson. 1985. Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49:242–243.
Yoshinari, T., R. Hynes, and R. Knowles. 1977. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9:177–183.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Smith, R.L., Garabedian, S.P. (1998). Using Transport Model Interpretations of Tracer Tests to Study Microbial Processes in Groundwater. In: Koch, A.L., Robinson, J.A., Milliken, G.A. (eds) Mathematical Modeling in Microbial Ecology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4078-6_5
Download citation
DOI: https://doi.org/10.1007/978-1-4615-4078-6_5
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-6826-7
Online ISBN: 978-1-4615-4078-6
eBook Packages: Springer Book Archive


