Skip to main content

Using Transport Model Interpretations of Tracer Tests to Study Microbial Processes in Groundwater

  • Chapter
Mathematical Modeling in Microbial Ecology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

It has long been known that microorganisms affect the geochemistry of groundwater. But despite this recognition, little detailed information is available regarding the rates and the factors controlling microbial processes in groundwater. Part of the reason stems from the relatively inaccessible nature of most groundwater and the difficulties encountered in obtaining representative samples of groundwater and subsurface sediments. At the same time, most groundwater systems are nutrient poor or oligotrophic environments in which the resident microorganisms are severely stressed and often nearly inactive. These populations are functioning so slowly that many types of activity measurements designed to assess microbial processes in more productive environments are ineffective for groundwater. However, because groundwater is by far the largest reservoir of freshwater in the world (Freeze and Cherry 1979), our lack of knowledge about groundwater microorganisms and their processes represents a significant void in the study of microbial ecology and in our ability to predict the outcome when these reserves are compromised by contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aelion, C. M., and P. M. Bradley. 1991. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer. Appl. Environ. Microbiol. 57: 57–63.

    Google Scholar 

  • Balderston, W. L., B. Sherr, and W. J. Payne. 1976. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 31:504–508.

    Google Scholar 

  • Barbaro, J. R., J. F. Barker, L. A. Lemon, and C. I. Mayfield. 1992. Biotransformation of BTEX under anaerobic denitrifying conditions: Field and laboratory observations. J. Contam. Hydrol. 11:245–272.

    Article  Google Scholar 

  • Barber, L. B. 1988. Dichlorobenzene in ground water. Evidence for long-term persistence. Ground Water 26:696–702.

    Article  Google Scholar 

  • Barber, L. B., E. M. Thurman, M. P. Schroeder, and D. R. LeBlanc. 1988. Long-term fate of organic micropollutants in sewage-contaminated groundwater. Environ. Sci. Technol. 22:205–211.

    Article  Google Scholar 

  • Barker, J. F., G. C. Patrick, and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Ground Water Monit. Rev. pp. 64–71. Vol. 7#3.

    Google Scholar 

  • Chapelle, F. H. 1993. Ground-Water Microbiology and Geochemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Chapelle, F. H., and D. R. Lovley. 1990. Rates of microbial metabolism in deep coastal plain aquifers. Appl. Environ. Microbiol. 56:1865–1874.

    Google Scholar 

  • Darcy, H. 1856. Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris.

    Google Scholar 

  • Davis, S. N., G. M. Thompson, H. W. Bentley, and G. Stiles. 1990. Ground water tracers: A short review. Ground Water 18:14–23.

    Article  Google Scholar 

  • Domenico, P. A., and F. W. Schwartz. 1990. Physical and Chemical Hydrogeology. John Wiley and Sons, New York.

    Google Scholar 

  • Firestone, M. K. 1982. Biological denitrification. In F. J. Stevenson (ed.), Nitrogen in Agricultural Soils, pp. 289–326. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • Garabedian, S. P., D. R. LeBlanc, L. W. Gelhar, and M. A. Celia. 1991. Large-scale natural-gradient tracer test in sand and gravel. Cape Cod, Massachusetts. 2. Analysis of spatial moments for a nonreactive tracer. Water Resour. Res. 27:911–924.

    Article  Google Scholar 

  • Ghiorse, W. C, and J. T. Wilson. 1988. Microbiol ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33:107–172.

    Article  Google Scholar 

  • Gillham, R. W., R. C. Starr, and D. J. Miller. 1990. A device for in situ determination of geochemical transport parameterdys. 2. Biochemical reactions. Ground Water 28:858–862.

    Google Scholar 

  • Harvey, R. W. 1991. Parameters involved in modeling movement of bacteria in ground water. In C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms, pp. 89–114, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Harvey, R. W., and L. B. Barber. 1992. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated ground water. J. Contain. Hydrol. 9:91–103.

    Article  Google Scholar 

  • Harvey, R. W., and S. P. Garabedian. 1991. Use of colloid filtration theory in modeling movement of bacteria through a contaminated aquifer. Environ. Sci. Technol. 25:178–185.

    Article  Google Scholar 

  • Harvey, R. W., and L. H. George. 1987. Growth determinations for unattached bacteria in a contaminated aquifer. Appl. Environ. Microbiol. 53:2992–2996.

    Google Scholar 

  • Harvey, R. W., L. H. George, R. L. Smith, and D. R. LeBlanc. 1989. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural and forced-gradient tracer tests. Environ. Sci. Technol. 23:51–56.

    Article  Google Scholar 

  • Harvey, R. W., R. L. Smith, and L. George. 1984. Effect of organic contamination upon microbial distribution and heterotrophic uptake in a Cape Cod, Mass., aquifer. Appl. Environ. Microbiol. 48:1197–1202.

    Google Scholar 

  • Harvey, R. W., and M. A. Widdowson. 1992. Microbial distributions, activities, and movement in the terrestrial subsurface: Experimental and theoretical studies. In R. J. Wagenet, P. Baveye, and B. A. Stewart (eds.), Interacting Processes in Soil Science, pp. 185–225. Lewis Publishers, Ann Arbor, MI.

    Google Scholar 

  • Hutchins, S. R., W. C. Downs, J. T. Wilson, G. B. Smith, D. A. Kovacs, D. D. Fine, R. H. Douglas, and D. J. Hendrix. 1991. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: Field demonstration. Ground Water 29:571–581.

    Article  Google Scholar 

  • Huyakorn, P. S., and G. F. Pinder. 1983. Computational Methods in Subsurface Flow. Academic Press, New York.

    MATH  Google Scholar 

  • LeBlanc, D. R. 1984. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts. U.S. Geological Survey Water Supply Paper 2218. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • LeBlanc, D. R., S. P. Garabedian, K. M. Hess, L. W. Gelhar, R. D. Quadri, K. G. Stollenwerk, and W. W. Wood. 1991. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 1. Experimental design and observed tracer movement. Water Resour. Res. 27:895–910.

    Article  Google Scholar 

  • Lyngkilde, J., and T. H. Christensen. 1993. Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contain. Hydrol. 10:273–289.

    Article  Google Scholar 

  • Madsen, E. L., J. L. Sinclair, and W. C. Ghiorse. 1991. In situ biodegradation: Microbiological patterns in a contaminated aquifer. Science 252:830–833.

    Article  Google Scholar 

  • Metge, D. W., M. H. Brooks, R. L. Smith, and R. W. Harvey. 1993. Effect of treatedsewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on Cape Cod. Appl. Environ. Microbiol. 59:2304–2310.

    Google Scholar 

  • Phelps, T. J., C. B. Fliermans, T. R. Garland, S. M. Pfiffner, and D. C. White. 1989. Methods for recovery of deep terrestrial subsurface sediments for microbiological studies. J. Microbiol. Meth. 9:267–279.

    Article  Google Scholar 

  • Roberts, P. V., G. D. Hopkins, D. M. Mackay, and L. Semprini. 1990. A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 1, Methology and field site characterization. Ground Water 28:591–604.

    Article  Google Scholar 

  • Roberts, P. V., M. N. Golz, and D. M. Mackay. 1986. A natural gradient experiment on solute transport in a sand aquifer. 3. Retardation estimates and mass balances for organic solutes. Water Resour. Res. 22:2047–2058.

    Article  Google Scholar 

  • Roberts, P. V., L. Semprini, G. D. Hopkins, D. Grbic-Galic, P. L. McCarty, and M. Reinhard. 1989. In-situ aquifer restoration of chlorinated aliphatics by methanotrophic bacteria. EPA Res. Dev. 600:1–7.

    Google Scholar 

  • Semprini, L., P. V. Roberts, G. D. Hopkins, and P. L. McCarty. 1990. A field evaluation of iin-situ biodegradation of chlorinated ethenes: Part 2, Results of biostimulation and biotransformation experiments. Ground Water 28:715–727.

    Article  Google Scholar 

  • Smith, R. L., S. P. Garbedian, and M. H. Brooks. 1996. Comparison of denitrification activity measurements in ground water using cores and natural gradient tracer tests. Environ. Sci. Technol. 30:34–48.

    Google Scholar 

  • Smith, R. L., and J. H. Duff. 1988. Denitrification in a sand and gravel aquifer. Appl. Environ. Microbiol. 54:1071–1078.

    Google Scholar 

  • Smith, R. L., R. W. Harvey, and D. R. LeBlanc. 1991. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in ground water studies. J. Contam. Hydrol. 7:285–300.

    Article  Google Scholar 

  • Smith, R. L., B. L. Howes, and J. H. Duff. 1991. Denitrification in nitrate-contaminated ground water: Occurrence in steep vertical geochemical gradients. Geochim. Cosmochim. Acta 55:1815–1825.

    Article  Google Scholar 

  • Smith, R. L., B. L. Howes, and S. P. Garabedian. 1991. In situ measurement of methane oxidation in ground water by using natural-gradient tracer tests. Appl. Environ. Microbiol. 57:1997–2004.

    Google Scholar 

  • Thorn, P. M. and R. M. Ventullo. 1988. Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA. Microb. Ecol. 16:3–16.

    Article  Google Scholar 

  • Thurman, E. M. 1985. Organic Geochemistry of Natural Waters. Nijhoff-Junk, Publishers, Boston, MA.

    Book  Google Scholar 

  • Trudell, M. R., R. W. Gillham, and J. A. Cherry. 1986. An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand squifer. J. Hydrol. 83:251–268.

    Article  Google Scholar 

  • Wilson, J. T., and B. H. Wilson. 1985. Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49:242–243.

    Google Scholar 

  • Yoshinari, T., R. Hynes, and R. Knowles. 1977. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9:177–183.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, R.L., Garabedian, S.P. (1998). Using Transport Model Interpretations of Tracer Tests to Study Microbial Processes in Groundwater. In: Koch, A.L., Robinson, J.A., Milliken, G.A. (eds) Mathematical Modeling in Microbial Ecology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4078-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4078-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6826-7

  • Online ISBN: 978-1-4615-4078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics