The Monod Model and Its Alternatives

  • Arthur L. Koch
Part of the Chapman & Hall Microbiology Series book series (CHMBS)


Jacques Monod started life as an ecologist. Logically, he follows after the Belgian ecologist, Verhulst. Verhulst (1838) developed the logistic equation for the growth of populations. It can be derived in a variety of contexts. Possibly the simplest way to understand his model of the mathematics of the population growth process is to think of a trypsinogen solution being converting into trypsin. If completely pure, the solution would be stable, but if one molecule of trypsin were present as a contaminant, then it would convert trypsinogen into trypsin and that would produce trypsin faster and faster—a simple autocatalytic process. Finally, production would be slowed by the consumption of the trypsinogen.


Substrate Concentration Specific Growth Rate Cytoplasmic Membrane Consumption Process Enzyme Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Best, J. B. 1955. The inference of intracellular properties from observed kinetic data. J. Cell Comp. Physiol. 46:1–27.CrossRefGoogle Scholar
  2. Blackman, F. F. 1905. Optima and limiting factors. Ann. Botany. 19:281–295.Google Scholar
  3. Briggs, G. E. and J. B. S. Haldane. 1925. A note on the kinetics of enzyme action. Biochem. J. 19:338–339.Google Scholar
  4. Button, D. K. 1985. Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49:270–297.Google Scholar
  5. Cohen, G. N., and J. Monod. 1957. Bacterial permeases. Bacteriol. Rev. 21:164–194.Google Scholar
  6. Dabes, J. N., R. K. Finn, and C. R. Wilke. 1973. Equations of substrate-limited growth: The case for Blackman kinetics. Biotechnol. Bioeng. 15:1159–1177.CrossRefGoogle Scholar
  7. Jacob, F., and J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of protein. J. Mol. Biol. 3:318–356.CrossRefGoogle Scholar
  8. Judson, H. F. 1996. The Eighth Day of Creation: The makers of the revolution in Biology. expanded edition. Simon and Schuster, New York.Google Scholar
  9. Kepes, F., and A. Kepes. 1981. Long-lasting synchrony of the division of enteric bacteria. Bioche. Biophys. Res. Commun. 99:761–767.CrossRefGoogle Scholar
  10. Koch, A. L. 1967. Kinetics of permease catalyzed transport. J. Theor. Biol. 14:103–130.CrossRefGoogle Scholar
  11. Koch, A. L. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microb. Physiol. 6:147–217.CrossRefGoogle Scholar
  12. Koch, A. L. 1972. Deviations from hyperbolic dependency of transport processes. J. Theor. Biol. 36:23–40.CrossRefGoogle Scholar
  13. Koch, A. L. 1982a. Multistep kinetics: Choice of models for growth of bacteria. J. Theor. Biol. 98:401–417.CrossRefGoogle Scholar
  14. Koch, A. L. 1982b. Diffusion limit and bacterial growth. In V. Krumphanzl, B. Sikyta, and Z. Vanek (eds.), Overproduction of Microbial Products, pp. 571–580. Academic Press, London.Google Scholar
  15. Koch, A. L. 1985. The macroeconomics of bacterial growth. In M. M. Fletcher and G. D. Floodgate (eds.), Bacteria in Their Natural Environment, pp. 1–42. The Society for General Microbiology, London.Google Scholar
  16. Koch, A. L. 1990. Diffusion: The crucial process in many stages of the biology of bacteria. Adv. Microb. Ecol. 11:37–70.CrossRefGoogle Scholar
  17. Koch, A. L. 1993a. Biomass growth rate during the cell cycle. CRC Crit. Rev. 19:17–42.CrossRefGoogle Scholar
  18. Koch, A. L. 1993b. The growth law of Bacillus subtilis. Antonie van Leeuwenhoek 63:45–53.CrossRefGoogle Scholar
  19. Koch, A. L. 1996. What size should a bacterium be? A question of scale. Annu. Rev. Microbiol, 50:317–348.CrossRefGoogle Scholar
  20. Koch, A. L. 1997. The microbial physiology and ecology of slow growth. Microbiol. and Mol. Biol. Rev., September.Google Scholar
  21. Koch, A. L., and R. Coffman. 1970. Diffusion, permeation, or enzyme limitation: A probe for the kinetics of enzyme induction. Biotech. Bioeng. XII:651–677.Google Scholar
  22. Koch, A. L., and C. H. Wang. 1982. How close to the theoretical diffusion limit do bacterial uptake systems function? Arch. Microbiol. 131:36–42.CrossRefGoogle Scholar
  23. Kooijman, S. A. L. M. Dynamic Energy Budgets in Biological Systems. Cambridge University Press, Cambridge.Google Scholar
  24. Medow, N. D., D. K. Fox, and S. Roseman. 1990. The bacterial phosphoenol pyruvate:glycose phosphotransferase system. Ann. Rev. Biochem. 59:497–542.CrossRefGoogle Scholar
  25. Michaelis, L., and Menten, M. M. 1913. Die Kinetik der Invertinwirkung. Biochem. Z. 49:333–369.Google Scholar
  26. Monod, J. 1942. Recherches sur las croissance des culture bacteriennes. Herman et Cie, Paris.Google Scholar
  27. Monod, J. 1949. The growth of bacterial cultures. Ann. Rev. Microbiol. 3:371–394.CrossRefGoogle Scholar
  28. Monod, J., and A. Audureau. 1946. Mutation et adaptation enzymatique chez Escherichia coli-mutabile. Ann. Inst. Pasteur 72:868–867.Google Scholar
  29. Monod, J., G. Cohen-Bazire, and M. Cohn. 1951. Sur la biosynthèse de la β-galactosidase (lactase) chez Escherichia coli: la spécificité de l’induction. Biochim. Biophys. Acta 7:585–599.CrossRefGoogle Scholar
  30. Pearl, R., and L. J. Reed. 1920. On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc. Natl. Acad. Sci. USA 6:275–288.CrossRefGoogle Scholar
  31. Postma, P. W., G. J. G. Ruijter, J. van der Vlog, and K. van Dam. 1992. Control of carbohydrate metabolism in enteric bacteria: qualitative and quantitative aspects. In E. Quagliariello and F. Palmieri (eds.), Molecular Mechanisms of Transport, pp. 97–105. Elsevier, New York.Google Scholar
  32. Powell, E. O.1967. Growth rate of microorganisms as a function of substrate concentration. In E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest (eds.), Microbial Physiology and Continuous Culture, pp. 34–55. Her Majesty’s Stationery Office, London.Google Scholar
  33. Rickenberg, H. V., G. N. Cohen, G. Buttin, and J. Monod. 1956. La galactoside permease d’ Escherichia coli. Ann. Inst. Pasteur 91:829–857.Google Scholar
  34. Ricklefs, R. E. 1990. Ecology, 3rd ed. W. H. Freeman, New York.Google Scholar
  35. Robinson, J. A., and J. M. Tiedje. 1983. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl. Environ. Microbiol. 45:1453–1458.Google Scholar
  36. Simkins, S., and M. Alexander 1985. Non-linear estimation of the parameters of Monod kinetics that best describe mineralization of several substrate concentrations by dissimilar bacterial densities. Appl. Environ. Microbiol. 50:816–824.Google Scholar
  37. von Bertalanffy, L. 1968. General Systems Theory. George Braziller, New York.Google Scholar
  38. Verhulst, P. F. 1838. Notice sur la loi que la population suit dans son accroissement. Corr. Mat. et Phys. 10:113–121. Reprinted in Readings in Ecology (ed. E. J. Kormondy), pp. 64–66. Prentice Hall, Englewood Cliffs, N.J., 1956.Google Scholar
  39. Wang, C. H., and A. L. Koch. 1978. Constancy of growth on simple and complex media. J. Bacteriol. 136:969–975.Google Scholar
  40. Woldringh, C. L., P. Huls, E. Pas, G. H. Brakenhoff, and N. Nanninga. 1987. Topography of peptidoglycan synthesis during elongation and polar cap formation in a cell division mutant of itEscherichia coli MC43100. J. Gen. Microbiol. 133:575–586.Google Scholar
  41. Zimmermann, W., and A. Rosselet. 1977. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob. Agents Chemotherapy 12:368–372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Arthur L. Koch

There are no affiliations available

Personalised recommendations