Advertisement

Fundamental Polyhedrons

  • Vladimir Tsurkov
  • Anatoli Mironov
Part of the Applied Optimization book series (APOP, volume 27)

Abstract

In this chapter, we construct convex hulls of the set of extremal vector pairs and on the set of the corresponding extremal matrices. We analyze optimization problems posed on sets of uniform matrices.

Keywords

Extreme Point Transportation Problem Vector Pair Convex Linear Combination Uniform Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 5

  1. [1]
    Alekseev V.M., Tikhomirov V.M., and Fomin S.V., Optimal’noe upravlenie ( Optimal Control ), Nauka, 1979.Google Scholar
  2. [2]
    Glazman I. M. and Lyubich Yu.I., Konechnomernyi lineinyi analiz (Finite-Dimensional Linear Analysis), Moscow: Nauka, 1969.Google Scholar
  3. [3]
    GoPshtein E.G. and Yudin D.B, Zadachi lineinogo programmirovaniya trans-portnogo tipa (Transportation Problems in Linear Programming), Moscow: Nauka, 1969.Google Scholar
  4. [4]
    Dunford N. and Schwartz J.T., Linear Operators, Part 1: General Theory, New York: Interscience, 1958. Translated under the title Lineinye operatory (obshchaya teoriya), Moscow: Mir, 1962.Google Scholar
  5. [5]
    Emelichev V.A., Kovalev M.M., and Kravtsov M.K., Mnogogranniki, grafy, optimizatsiya (Polyhedrons, Graphs, and Optimization), Moscow: Nauka, 1981.Google Scholar
  6. [6]
    Karmanov V.G., Matematicheskoe programmirovanie (Mathematical Programming), Moscow: Nauka, 1969.Google Scholar
  7. [7]
    Kuznetsov A.V., Sakovich V. A., and Kholod N. N., Vysshaya matematika. Matematicheskoe programmirovanie (Higher Mathematics: Mathematical programming), Minsk: Vysshaya Shkola, 1994.Google Scholar
  8. [8]
    Mironov A.A., Geometry of the Points in the Space R n that Can Be Realized in a Graph, Usp. Mat. Nauk, 1977, vol. 32, no. 6, pp. 231–232.MathSciNetMATHGoogle Scholar
  9. [9]
    Mironov A.A. and Tsurkov V.l., Approximation and Decomposition by Means of Extremal Graphs, Zh. VychisL Mat. Mat. Fiz. 1993, vol. 33, no. 2, pp. 283–298.MathSciNetMATHGoogle Scholar
  10. [10]
    Mironov A.A., Uniform Generalized Graphs, Dokl Akad. Nauk, 1996, vol. 351, no. 4, pp. 465–468.MathSciNetGoogle Scholar
  11. [11]
    Moder J. and Elmaghraby S.S., Handbook of Operations Research, New York: Van Nostrand, 1978. Translated under the title Issledovanie operatsii. Metodolo-gicheskie osnovy i matematicheskie metody, vol. 1, Moscow: Mir, 1981.Google Scholar
  12. [12]
    Trius E.B., Zadachi matematicheskogo programmirovamya transportnogo tipa (Transportation Problems in Mathematical Programming), Moscow: Sovetskoe Radio, 1967.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Vladimir Tsurkov
    • 1
  • Anatoli Mironov
    • 1
  1. 1.Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations