Skip to main content

Maintaining geometric dependencies in assembly planning

  • Chapter
Computer-Aided Mechanical Assembly Planning

Abstract

Used as a tool to get manufacturability feedback in early design stages, an assembly sequence planner would be a boon to designers. By pressing a button, an engineer could receive an assembly plan or set of plans for the product being designed, along with estimates of production time and cost. The design could then be adjusted to make it easier to build. But to be most useful, such a tool must be both autonomous and fast. If the designer has to do a great deal of geometric reasoning for the planner or wait days for the system to do it automatically, the assembly planner will be used infrequently, and the impact on the design will be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Balakumar, J.-C. Robert, R. Hoffman, K. Ikeuchi, and T. Kanade.VANTAGE: A Frame-Based Geometric Modeling System - Program-mer/User’s Manual V1.0. The Robotics Institute, Carnegie Mellon Uni-versity, 1989. 240

    Google Scholar 

  2. D. F. Baldwin. Algorithmic methods and software tools for the generation of mechanical assembly sequences. Master’s thesis, Massachusetts Institute of Technology, 1990.

    Google Scholar 

  3. J. Barraquand and J.C. Latombe. Robot motion planning: A distributed representation approach. To appear in International Journal of Robotics Research, 1991.

    Google Scholar 

  4. J. J. Bausch and K. Youcef-Toumi. Kinematic methods for automated fixture reconfiguration planning. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 1396–1401, 1990.

    Google Scholar 

  5. N. Boneschanscher, H. van der Drift, S. J. Buckley, and R. H. Taylor. Subassembly stability. In Proceedings of the National Conference on Artificial Intelligence, pages 780–785, 1988.

    Google Scholar 

  6. A. Bourjault. Contribution à une approche méthodologique de l’assemblage automatisé: élaboration automatique des séquences opératoires. PhD thesis, Faculté des Sciences et des Techniques de l’Université de Franche-Comté, 1984.

    Google Scholar 

  7. T. L. De Fazio and D. E. Whitney. Simplified generation of all mechanical assembly sequences. IEEE Journal of Robotics and Automation, RA-3(6):640–658, December 1987. Errata in RA-4(6):705–708.

    Article  Google Scholar 

  8. L. S. Homem de Mello. Task Sequence Planning for Robotic Assembly. PhD thesis, Carnegie Mellon University, 1989.

    Google Scholar 

  9. L. S. Homem de Mello and A. C. Sanderson. AND/OR graph representation of assembly plans. Technical Report CMU-RI-TR-86–8, Robotics Institute - Carnegie-Mellon University, 1986.

    Google Scholar 

  10. J. Jones and T. Lozano-Perez. Planning two-fingered grasps for pick-andplace operations on polyhedra. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 683–688, 1990.

    Google Scholar 

  11. H. Ko and K. Lee. Automatic assembling procedure generation from mating conditions. Computer Aided Design, 19(1):3–10, February 1987.

    Article  Google Scholar 

  12. A. Koutsou. Planning Motion in Contact to Achieve Parts Mating. PhD thesis, University of Edinburgh, 1986.

    Google Scholar 

  13. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, November 1990.

    Google Scholar 

  14. T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE Transactions on Computers, C-32(2):108–120, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. M. Miller and R. L. Hoffman. Automatic assembly planning with fasteners. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 69–74, 1989.

    Google Scholar 

  16. D. K. Pai and B. R. Donald. On the motion of compliantly-connected rigid bodies in contact, part I: The motion prediction problem. Technical Report 89–1047, Computer Science Department - Cornell University, October 1989.

    Google Scholar 

  17. R. S. Palmer. Computational Complexity of Motion and Stability of Polygons. PhD thesis, Department of Computer Science - Cornell University, 1989.

    Google Scholar 

  18. J.-M. Valade. Geometric reasoning and automatic synthesis of assembly trajectory. In Proceedings of the International Conference on Advanced Robotics, pages 43–50, 1985.

    Google Scholar 

  19. R. H. Wilson and J.-F. Rit. Maintaining geometric dependencies in an assembly planner. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 890–895, 1990.

    Google Scholar 

  20. J. D. Wolter. On the Automatic Generation of Plans for Mechanical Assembly. PhD thesis, The University of Michigan, 1988.

    Google Scholar 

  21. T. C. Woo. Automatic disassembly and total ordering in three dimensions. In Conference on Intelligent and Integrated Manufacturing Analysis and Synthesis, pages 291–303, 1987.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, R.H., Rit, JF. (1991). Maintaining geometric dependencies in assembly planning. In: Homem de Mello, L.S., Lee, S. (eds) Computer-Aided Mechanical Assembly Planning. The Springer International Series in Engineering and Computer Science, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4038-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4038-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6806-9

  • Online ISBN: 978-1-4615-4038-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics