Numerical Aspects and Implementation of theDamoclesMonte Carlo Device Simulation Program

  • Steven E. Laux
  • Massimo V. Fischetti
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 144)

Abstract

We discuss our numerical model for electronic transport in semiconductor devices from three perspectives: (i) physical basis of the model, (ii) issues related to numerics and program implementation, and (iii) device simulation results. The emphasis in this chapter will be on numerics and program implementation, while the other two topics are only reviewed for completeness. Our Monte Carlo device simulation program is called DAMOCLES (Device Analysis using Monte Carlo et Poisson solver). To date, DAMOCLES has been used to simulate Si, GaAs, InP, Gap 0.47In0.53 As and InAs MOSFETs and bipolar homojunction transistors and GaAs MESFETs.

Keywords

Dioxide GaAs Expense Gallium Germanium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles”, Maidenhead: McGraw-Hill, 1981.Google Scholar
  2. 2.
    C. Jacoboni and P. Lugli, “The Monte Carlo Method for Semiconductor Devices Simulation”, New York: Springer, 1989.CrossRefGoogle Scholar
  3. 3.
    S. Selberherr, “Analysis and Simulation of Semiconductor Devices”, New York: Springer, 1984.CrossRefGoogle Scholar
  4. 4.
    For example, W. Hänsch and S. Selberherr, “MINIMOS 3: A MOSFET Simulation that Includes Energy Balance”, IEEE Trans. Electron Devices.,vol. ED-34, p. 1074–1078, May 1987, or A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan and G. Baccarani, “A New Discretization Strategy of the Semiconductor Equations Comprising Momentum and Energy Balance”, IEEE Trans. Computer-Aided Design., vol. 7, p. 1074–1078, February 1988. A longer sampling of groups working on these approaches can be found in the references contained in [12].Google Scholar
  5. 5.
    M. V. Fischetti and S. E. Laux, “Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects”, Phys. Rev. B, vol. 38, p. 9721–8745, 1988.CrossRefGoogle Scholar
  6. 6.
    S. E. Laux and M. V. Fischetti, “Monte Carlo Simulation of Submicrometer Si n-MOSFETs at 77 and 300 K”, IEEE Electron Device Lett., vol. EDL-9, p. 467–469, 1988.CrossRefGoogle Scholar
  7. 7.
    M. V. Fischetti and S. E. Laux, “Monte Carlo Simulation of Submicron Si MOSFETs”, Simulation of Semiconductor Devices and Processes, vol. 3, G. Baccarani and M. Rudan (ed.), Technoprint, Bologna, Italy, p. 349–368, 1988.Google Scholar
  8. 8.
    M. V. Fischetti, S. E. Laux and D. J. DiMaria, “The Physics of Hot Electron Degradation of Si MOSFETs: Can We Understand It?”, Applied Surface Science., vol. 39, p. 578–596, 1989.CrossRefGoogle Scholar
  9. 9.
    M. V. Fischetti, S. E. Laux and W. Lee, “Monte Carlo Simulation of Hot-Carrier Transport in Real Semiconductor Devices”, Solid-State Electronics, vol. 32, p. 1723–1729,1989.CrossRefGoogle Scholar
  10. 10.
    W. Lee, S. E. Laux, M. V. Fischetti and D. D. Tang, “Monte Carlo Simulation of Non-Equilibrium Transport in Ultra-Thin Base Si Bipolar Transistors”, Technical Digest, 1989 International Electron Devices Meeting, p. 473–476, 1989.Google Scholar
  11. 11.
    M. V. Fischetti and S. E. Laux, “Are GaAs MOSFETs Worth Building? A Model-Based Comparison of Si and GaAs n-MOSFETs”, Technical Digest, 1989 International Electron Devices Meeting,p. 481–484, 1989.Google Scholar
  12. 12.
    S. E. Laux, M. V. Fischetti and D. J. Frank, “Monte Carlo Analysis of Semiconductor Devices: The DAMOCLES Program”, IBM J. Res. Develop., vol. 34, p. 466–494, July 1990.CrossRefGoogle Scholar
  13. 13.
    S. Tiwari, M. V. Fischetti and S. E. Laux, “Transient and Steady-State Overshoot in GaAs, InP, Gap 47In0.53As and InAs Bipolar Transistors”, Technical Digest, 1990 International Electron Devices Meeting, 1990.Google Scholar
  14. 14.
    E. F. Crabbé, J. M. C. Stork, G. Baccarani, M. V. Fischetti and S. E. Laux, “The Impact of Non-Equilibrium Transport on Breakdown and Transit Time in Bipolar Transistors”, Technical Digest, 1990 International Electron Devices Meeting, 1990. Google Scholar
  15. 15.
    S E. Laux and M. V. Fischetti, “The DAMOCLES Monte Carlo Device Simulation Program”, Computational Electronics: Semiconductor Transport and Device Simulation,K. Hess, J. P. Leburton and U. Ravaioli (ed.), Kluwer Academic Publishers, Boston, p. 87–92, 1991Google Scholar
  16. 16.
    M. V. Fischetti, “Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-blende Structures. Part I: Homogeneous Transport”, to appear in IEEE Trans. Electron Devices, March 1991. Google Scholar
  17. 17.
    M. V. Fischetti and S. E. Laux, “Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-blende Structures. Part II: Submicron MOSFETs”, to appear in IEEE Trans. Electron Devices, March 1991. Google Scholar
  18. 18.
    W.Fawcett, A.D Boardman and S. Swain, “Monte Carlo Determination of Electron Transport Properties of Gallium Arsenide”, J. Phys. Chem. Solids, vol. 31, p. 1963–1990,1970. CrossRefGoogle Scholar
  19. 19.
    C Canali, C. Jacoboni, F. Nava, G. Ottaviani and A. Algerigi-Quaranta, “Electron Drift Velocity in Silicon”, Phys. Rev. B, vol.12,p.2265–2284,1975 CrossRefGoogle Scholar
  20. 20.
    G. Ottaviani, L. Reggiani, C. Canali, F. Nava and A. Alberigi-Quaranta, “Hole Drift Velocity in Silicon”, Phys. Rev. B, vol. 12, p. 3318–3329, 1975. CrossRefGoogle Scholar
  21. 21.
    R. Brunetti, C. Jacoboni, F. Nava and L. Reggiani, “Diffusion Coefficients in Electrons in Silicon”, J. Appl. Phys., vol. 52, p. 6713–6722,1981. CrossRefGoogle Scholar
  22. 22.
    C Jacoboni, F. Nava, C. Canali and G. Ottaviani, “Electron Drift Velocity and Diffusivity in Germanium,Phys. Rev. B, vol. 24, p.1014–1026,1981 CrossRefGoogle Scholar
  23. 23.
    C. Jacoboni, R. Minder and G. Majni, “Effects of Band Non-Parabolicity on Electron Drift Velocity in Silicon above Room Temperature”, J. Phys. Chem. Solids, vol. 36,p. 1129–1133,1975 CrossRefGoogle Scholar
  24. 24.
    C. Jacoboni and L. Reggiani, “The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Application to Covalent Materials”, Rev. Mod. Phys., vol 55, p.645–705,1983 CrossRefGoogle Scholar
  25. 25.
    M. A. Littlejohn, J. R. Hauser and T. H. Glisson, “Velocity-Field Characteristics of GaAs with16-L6-X Conduction Band Ordering”,J. Appl. Phys.,vol. 48, p.4587–4590,1977 CrossRefGoogle Scholar
  26. 26.
    W Fawcett and D. C. Herbert, “High-Field Transport in Gallium Arsenide and Indium Phosphide”, J. Phys. C: Solid State Phys.,vol.7,p. 1641–1654,1974 CrossRefGoogle Scholar
  27. 27.
    D. C. Herbert, W. Fawcett and C. Hilsum, “High-Field Transport in Indium Phosphide”, J. Phys. C: Solid State Phys.,vol.9, p.3969–3975,1976 CrossRefGoogle Scholar
  28. 28.
    J. R. Hauser, M. A. Littlejohn and T. H. Glisson, “Velocity-Field Relationship of InAs-InP Alloys Including the Effect of Alloy Scattering”, Appl. Phys. Lett. vol. 28,p. 458–461,1976 CrossRefGoogle Scholar
  29. 29.
    P. J. Price, “Monte Carlo Calculations of Electron Transport in Solids”,Semiconductors and Semimetals,vol.14, p.249–308,1979. CrossRefGoogle Scholar
  30. 30.
    M. L. Cohen and T. K. Bergstresser, “Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures”, Phys. Rev., vol. 141, p. 789–796,1966. CrossRefGoogle Scholar
  31. 31.
    H. Shichijo and K. Hess, “Band-Structure-Dependent Transport and Impact Ionization in GaAs”, Phys. Rev. B,vol. 23, p. 4197–4207, 1981. CrossRefGoogle Scholar
  32. 32.
    J. Y. Tang and K. Hess, “Impact Ionization of Electrons in Silicon”, J. Appl. Phys., vol. 54, p. 5139–5144, 1983. CrossRefGoogle Scholar
  33. 33.
    J. Y. Tang and K. Hess, “Theory of Hot Electron Emission from Silicon into Silicon Dioxide J. Appl. Phys.,vol. 54, p. 5145–5151, 1983. CrossRefGoogle Scholar
  34. 34.
    K. Brennan, K. Hess, J. Y. Tang and G. J. Iafrate, “Transient Electronic Transport in InP under the Conditions of High-Field Electron Injection”, IEEE Trans. Electron Devices, vol. ED-30, p. 1750–1754, 1983.CrossRefGoogle Scholar
  35. 35.
    K. Brennan and K. Hess, “High-Field Transport in GaAs, InP and InAs”, Solid-State Electron., vol. 27, p. 347–357, 1984.CrossRefGoogle Scholar
  36. 36.
    M. V. Fischetti and J. M. Higman, “Theory and Calculation of the Deformation Potential Electron-Phonon Scattering Rates in Semiconductors,” in Monte Carlo Simulations of Semiconductors and Semiconductor Devices, ed. by K. Hess, Kluwer Academic Press, Norwell, MA, 1991.Google Scholar
  37. 37.
    F. Venturi, E. Sangiorgi, R. Brunetti, W. Quade, C. Jacoboni and B. Ricco, “An Efficient Monte Carlo Simulator for High-Energy Electrons and Holes in MOSFETs”, Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD III“, Honolulu, Hawaii, June 3–4, 1990Google Scholar
  38. 38.
    J. Bude, K. Hess and G. J. Iafrate, “Field Assisted Impact Ionization in Semiconductors”, Computational Electronics: Semiconductor Transport and Device Simulation, K. Hess, J. P. Leburton and U. Ravaioli (ed.), Kluwer Academic Publishers, Boston, p. 131–136, 1991.Google Scholar
  39. 39.
    R. E. Bank and D. J. Rose, “Parameter Selection for Newton-like Methods Applicable to Nonlinear Partial Differential Equations,” SIAM J. Numer. Anal. vol. 17, p. 806–822, 1980.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    O. G. Johnson, C. A. Micchelli and G. Paul, “Polynomial Preconditioners for Conjugate Gradient Calculations”, SIAM J. Numer. Anal. vol. 20, p. 362–376, 1983.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    A. Phillips, Jr. and P. J. Price, “Monte Carlo Calculations on Hot Electron Tails”, Appl. Phys. Lett., vol. 30, p. 528–530, 1977.CrossRefGoogle Scholar
  42. 42.
    B. K. Ridley, “Quantum Processes in Semiconductors”, Oxford: Clarendon Press, 1988.Google Scholar
  43. 43.
    G. A. Sai-Halasz, M. R. Wordeman, D. P Kern, S. Rishton and E. Ganin, “High Transconductance and Velocity Overshoot in NMOS Devices at the 0.1-µm Gate-Length Level”, IEEE Electron Device Lett., vol. 9, p. 464–466, 1988.CrossRefGoogle Scholar
  44. 44.
    A. B. Fowler, private communication.Google Scholar
  45. 45.
    M. Feng, C. L. Lau, V. Eu and C. Ito, “Does the Two-Dimensional Electron Gas Effect Contribute to High-Frequency and High-Speed Performance of Field-Effect Transistors”, Appl. Phys. Lett., vol. 57, p. 1233–1235, 1990.CrossRefGoogle Scholar
  46. 46.
    S. E. Laux and W. Lee, “Collector Signal Delay in the Presence of Velocity Overshoot”, IEEE Electron Device Lett., vol. 11, p. 174–176, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Steven E. Laux
    • 1
  • Massimo V. Fischetti
    • 1
  1. 1.IBM Research DivisionT. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations