Quadratic 0-1 Programming

  • Srimat T. Chakradhar
  • Vishwani D. Agrawal
  • Michael L. Bushneil
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 140)


Once the test generation problem has been formulated as an optimization problem on a neural network, several methods can be used to find the minimum of the energy function.


Energy Function Test Generation Transitive Closure Test Vector Strong Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. D. Agrawal and S. C. Seth. Test Generation for VLSI Chips. EEEE Computer Society Press, Los Alamitos, CA, 1988.Google Scholar
  2. [2]
    A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Company, Reading, MA, 1974.MATHGoogle Scholar
  3. [3]
    J. Alspector and R. B. Allen. A Neuromorphic VLSI Learning System. In P. Loseleben, editor, Advanced Research in VLSI: Proceedings of the 1987 Stanford Conference, pages 313–349. MIT Press, Cambridge, Massachus-setts, 1987.Google Scholar
  4. [4]
    B. Aspvall, M. F. Plass, and R. E. Tarjan. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas. Information Processing Utters, 3(8): 121–123, March 1979.MathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Bailey. Extra High Speed Matrix Multiplication on the Cray-2. SIAM Journal on Scientific and Statistical Computing, 9(3): 603–607, May 1988.MATHCrossRefGoogle Scholar
  6. [6]
    A. Billionnet and B. Jaumard. A Decomposition Method for Minimizing Quadratic Pseudo Boolean Functions. Operations Research Letters, 8(3): 161–163, June 1989.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    R. P. Brent. The Parallel Evaluation of General Arithmetic Expressions. Journal of the ACM, 21(2): 201–206, April 1974.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    F. Biglez and H. Fujiwara. A Neutral Netlist of 10 Combinatorial Benchmark Circuits and a Target Translator in FORTRAN. In Proceedings of the IEEE International Symposium on Circuits and Systems, pages 663–698, June 1985.Google Scholar
  9. [9]
    M. W. Carter:. The Indefinite Zero One Quadratic Problem. Discrete Applied Mathematics, 7(1): 23–44, January 1984.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    S. T. Chakradhar, V. D. Agrawal, and M. L. Bushneil. Automatic Test Generation Using Quadratic 0-1 Programming. In Proceedings of the 27th ACMIIEEE Design Automation Conference, pages 654–659, June 1990.Google Scholar
  11. [11]
    D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 1–6, May 1987.Google Scholar
  12. [12]
    G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Series in Mathematical Science, The Johns Hopkins University Press, Baltimore, Maryland, 1989.Google Scholar
  13. [13]
    P. L. Hammer and B. Simeone. Quadratic Functions of Binary Variables. Technical Report RRR # 20-87, Rutgers Center for Operations Research (RUTCOR), Rutgers University, NJ 08903, June 1987.Google Scholar
  14. [14]
    P. Hansen, B. Jaumard, and M. Minoux. A Linear Expected-Time Algorithm for Deriving All Logical Conclusions Implied by a Set of Boolean Inequalities. Mathematical Programming, 34(2): 223–231, March 1986.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    N. Karmarkar, M. G. Resende, and K. G. Ramakrishnan. An Interior Point Approach to NP-Complete Problems. Contemporary Mathematics, 114: 297–308, 1990.CrossRefGoogle Scholar
  16. [16]
    T. Kirkland and M. R. Mercer. A Topological Search Algorithm For ATPG. In Proceedings of the 24thACMIIEEE Design Automation Conference, pages 502–508, June 1987.Google Scholar
  17. [17]
    C. D. Kornfeld, R. C. Frye, C. C. Wong, and E. A. Rietman. An Optically Programmed Neural Network. In Proceedings of the International Conference on Neural Networks, San Diego, CA, volume 2, pages 357–364, July 1988.CrossRefGoogle Scholar
  18. [18]
    T. Larrabee. Efficient Generation of Test Patterns Using Boolean Difference. In Proceedings of the IEEE International Test Conference, pages 795–801, August 1989.Google Scholar
  19. [19]
    S. R. Pawagi, P. S. Gopalakrishnan, and I. V. Ramakrishnan. Computing Dominators in Parallel. Information Processing Letters, 24(4): 217–221, 1987.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    P. R. Schneider. On the Necessity to Examine D-Chains in Diagnostic Test Generation. IBM Journal of Research and Development, 11(1): 114, January 1967.CrossRefGoogle Scholar
  21. [21]
    M. H. Schulz, E. Trischler, and T. M. Sarfert. SOCRATES: A Highly Efficient Automatic Test Pattern Generation System. IEEE Transactions on Computer-Aided Design, 7(1): 126–136, January 1988.CrossRefGoogle Scholar
  22. [22]
    R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal of Computing, 1(2): 146–160, June 1972.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    The TTL Data Book for Design Engineers, Second edition, page 199. Texas Instruments, 1973.Google Scholar
  24. [24]
    S. Warshall. A Theorem on Boolean Matrices. Journal of the ACM, 9(1): 11–12, January 1962.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Srimat T. Chakradhar
    • 1
  • Vishwani D. Agrawal
    • 2
  • Michael L. Bushneil
    • 3
  1. 1.NEC Research InstituteUSA
  2. 2.AT&T Bell LaboratoriesUSA
  3. 3.Rutgers UniversityUSA

Personalised recommendations