Oncogenes as clinical prognostic indicators

  • Margaret C. Sunderland
  • William L. McGuire
Part of the Cancer Treatment and Research book series (CTAR, volume 53)

Abstract

Recent advances in molecular biology have enabled oncologic researchers to probe the mechanisms of neoplasm at the level of individual gene expression. Current studies of oncogenesis suggest that specific genes may induce cancer and that normal resident genes, termed proto-oncogenes, required for cellular function can be converted to oncogenes by genetic mutation [1]. Alterations in the structure or expression of certain proto-oncogenes appear to occur through a variety of mechanisms, including point mutations within the gene, rearrangements within the coding sequence of the gene or within a noncoding but functionally effective segment, amplification or overexpression of the gene, and deletion of possible ‘antioncogenes.’ Each of these mechanisms may result in the activation of cellular proto-oncogenes and are found to be associated experimentally with human cancer [2]. While it has not been proven that these genetic anomalies are directly responsible for tumorigenesis, the frequency of their presence and/or expression in some oncologic diseases suggests a biologic importance in the transformation and growth of neoplastic cells [3, 4].

Keywords

Lymphoma Estrogen Codon Leukemia Adenocarcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop JM, 1987. The molecular genetics of cancer. Science 235:305–311.PubMedCrossRefGoogle Scholar
  2. 2.
    Tabin CJ, Bradley SM, Bargmann CL, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowry DA, Chang EH, 1982. Mechanism of activation of a human oncogene. Nature 300:143–149.PubMedCrossRefGoogle Scholar
  3. 3.
    Alitalo K, Schwab M, 1986. Oncogene amplification in tumor cells. Adv Cancer Res 47:235–281.PubMedCrossRefGoogle Scholar
  4. 4.
    Sandberg AA, Turc-Carel C, Gemmill RM, 1988. Chromosomes in solid tumors and beyond. Cancer Res 48:1049–1059.PubMedGoogle Scholar
  5. 5.
    Croce CM, 1986. Chromosomal translocation and human cancer. Cancer Res 46:6019–6023.PubMedGoogle Scholar
  6. 6.
    Griesser H, Tkachuk D, Reis MD, Mak TW, 1989. Gene rearrangements and translocations in lymphoproliferative diseases. Blood 73:1402–1415.PubMedGoogle Scholar
  7. 7.
    Southern EM, 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas PS, 1983. Recombinant DNA. In Methods in Enzymology (Wu R, Grossman L, Moldave K, eds). New York: Academic Press.Google Scholar
  9. 9.
    Friedlander ML, Hedly DW, Taylor IW, 1984. Clinical and biological significance of aneuploidy in human tumors. J Clin Pathol 37:961–974.PubMedCrossRefGoogle Scholar
  10. 10.
    Merkel DE, Dressler LG, McGuire WL, 1987. Flow cytometry, cellular DNA content, and prognosis in human malignancy. J Clin Oncol 5:1690–1703.PubMedGoogle Scholar
  11. 11.
    Trent JM, 1985. Cytogenetic and molecular biologic alterations in human breast cancer: A review. Breast Cancer Res Treat 5:221–229.PubMedCrossRefGoogle Scholar
  12. 12.
    McGuire WL, 1987. Prognostic factors for recurrence and survival in human breast cancer. Breast Cancer Res Treat 10:5–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Fisher B, Slack NH, Bross ID, 1969. Cancer of the breast: Size of neoplasm and prognosis. Cancer 24:1071–1080.PubMedCrossRefGoogle Scholar
  14. 14.
    Carter CL, Allen A, Henson DE, 1989. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63:181–187.PubMedCrossRefGoogle Scholar
  15. 15.
    Clark GM, McGuire WL, 1988. Steroid receptors and other prognostic factors in primary breast cancer. Semin Oncol 15:20–25.PubMedGoogle Scholar
  16. 16.
    Dressier LG, Seamer LC, Owens MA, Clark GM, McGuire WL, 1988. DNA flow cytometry and prognostic factors in 1331 frozen breast cancer specimens. Cancer 61:420–427.CrossRefGoogle Scholar
  17. 17.
    Meyer JS, Province M, 1988. Proliferative index of breast carcinoma by thymidine labeling: Prognostic power independent of stage, estrogen and progesterone receptors. Breast Cancer Res Treat 12:191–204.PubMedCrossRefGoogle Scholar
  18. 18.
    Clark GM, Dressier LG, Owens MA, Pounds G, Oldaker T, McGuire WL, 1989. Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry. N Engl J Med 320:627–633.PubMedCrossRefGoogle Scholar
  19. 19.
    Fisher B, Redmond C, Fisher ER, Caplan R, 1988. Relative worth of estrogen and progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: Findings from the National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol 6:1076–1087.PubMedGoogle Scholar
  20. 20.
    McGuire WL, 1988. Estrogen receptors vs. nuclear grade as prognostic factors in axillary node negative breast cancer (editorial). J Clin Oncol 6:1071–1072.PubMedGoogle Scholar
  21. 21.
    McGuire WL, 1989. Adjuvant therapy of node-negative breast cancer (editorial). N Engl J Med 320:525–527.PubMedCrossRefGoogle Scholar
  22. 22.
    DeVita VT, 1988. The ‘clinical alert’ from the National Cancer Institute (letter). N Engl J Med 319:948–949.Google Scholar
  23. 23.
    Liotta LA, 1988. Gene products which play a role in cancer invasion and metastasis. Breast Cancer Res Treat 11:113–124.PubMedCrossRefGoogle Scholar
  24. 24.
    Slamon DJ, de Kernion JB, Verma IM, 1984. Expression of cellular oncogenes in human malignancies. Science 224:256–262.PubMedCrossRefGoogle Scholar
  25. 25.
    Whittaker JL, Walker RA, Varley JM, 1986. Differential expression of cellular oncogenes in benign and malignant human breast tissue. Int J Cancer 38:651–655.PubMedCrossRefGoogle Scholar
  26. 26.
    Cline M, Battifora H, Yokota JJ, 1987. Proto-oncogene abnormalities in human breast cancer: Correlations with anatomic features and clinical course of diagnosis. J Clin Oncol 5:999–1006.PubMedGoogle Scholar
  27. 27.
    Biunno I, Pozzi MR, Pierotti MA, Pilotti S, Cattoretti G, Delia Porta G, 1988. Structure and expression of oncogenes in surgical specimens of human breast carcinomas. Br J Cancer 57:464–468.PubMedCrossRefGoogle Scholar
  28. 28.
    van de Vijver MJ, Mooi WJ, Peterse J, Nusse R, 1988. Amplification and over-expression of the neu oncogene in human breast carcinomas. Eur J Surg Oncol 14:111–114.PubMedGoogle Scholar
  29. 29.
    Merkel DE, McGuire WL, 1988. Oncogenes and cancer prognosis. Important Adv Oncol 103–117.Google Scholar
  30. 30.
    Lidereau R, Mathieu-Mahul D, Escot C, Theillet C, Champene MH, Cole S, Mauchauffe M, Ali I, Amione J, Callahan R, Larsen CJ, 1988. Genetic variability of proto-oncogenes for breast cancer risk and prognosis. Biochimie 70:951–959.PubMedCrossRefGoogle Scholar
  31. 31.
    Bowkowski A, Body JJ, Leclerq G, 1988. Hormone receptors and cancer. Eur J Cancer Clin Oncol 24:509–511.CrossRefGoogle Scholar
  32. 32.
    Akiyama T, Sudo C, Ogawara H, Toyoshima K, Yamamoto T, 1986. The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. Science 232:1644–1646.PubMedCrossRefGoogle Scholar
  33. 33.
    Bargman CI, Hung M-C, Weinberg RA, 1986. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226–230.CrossRefGoogle Scholar
  34. 34.
    Rio MC, Bellocq JP, Gairard B, Rasmussen UB, Krust A, Koehl C, Calderoli H, Schiff V, Renaud R, Chambon P, 1987. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene ERBB2. Proc Natl Acad Sci USA 84:9243–9247.PubMedCrossRefGoogle Scholar
  35. 35.
    Slamon DJ, Clark GM, Wong SG, Levin SJ, Ullrich WA, McGuire WL, 1987. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182.PubMedCrossRefGoogle Scholar
  36. 36.
    van de Vijver MJ, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R, 1987. Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol 7:2019–2023.PubMedGoogle Scholar
  37. 37.
    Varley JM, Swallow JE, Brammar VJ, Whittaker JL, Walker RA, 1987. Alterations to either c-erbB-2 (neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1:423–430.PubMedGoogle Scholar
  38. 38.
    Venter DJ, Tuzi NL, Kumar S, Gullick WJ, 1987. Overexpression of the c-erbB-2 onco-protein in human breast carcinomas: Immunohistochemical assessment correlates with gene amplification. Lancet 2:69–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou D, Battifora H, Yokota J, Yamamoto T, Cline MJ, 1987. Association of multiple copies of the c-erbB-2 oncogene with spread of breast cancer. Cancer Res 47:6123–6125.PubMedGoogle Scholar
  40. 40.
    Ali IU, Campbell G, Lidereau R, Callahan R, 1988. Lack of evidence for the prognostic significance of c-erbB-2 amplification in human breast carcinoma. Oncogene Res 3:139–146.PubMedGoogle Scholar
  41. 41.
    Berger MS, Locher GW, Saurer S, Gullick WJ, Waterfield MD, Groner B, Hynes NE, 1988. Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res 48:1238–1243.PubMedGoogle Scholar
  42. 42.
    Fontaine J, Tesseraux M, Kline V, Bastert G, Blin N, 1988. Gene amplification and expression of the neu (c-erbB-2) sequence in human mammary carcinoma. Oncology 45:360–363.PubMedCrossRefGoogle Scholar
  43. 43.
    Tal M, Wetzler M, Josefberg Z, Deutch A, Gutman M, Assaf D, Kris R, Shiloh Y, Givol D, Schlessinger J, 1988. Sporadic amplification of the HER 2/neu proto oncogene in adenocarcinomas of various tissues. Cancer Res 48:1517–1520.PubMedGoogle Scholar
  44. 44.
    Zhou DJ, Ahuja H, Cline MJ, 1989. Proto-oncogene abnormalities in human breast cancer: c-erbB-2 amplification does not correlate with recurrence of disease. Oncogene 4:105–108.PubMedGoogle Scholar
  45. 45.
    Zeillinger R, Kury F, Czerwenka K, Kubista E, Sliutz G, Knogler W, Huber J, Zillinoki C, Reiner G, Jakes R, Staffen A, Reiner A, Wrba F, Spona J, 1989. HER-2 amplification, steroid receptors and epidermal growth factor receptor in primary breast cancer. Oncogene 4:109–114.PubMedGoogle Scholar
  46. 46.
    Lacroix H, Iglehart JD, Skinner MA, Kraus MH, 1989. Overexpression of erbB-2 or EGF receptor proteins present in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional metastases. Oncogene 4:145–151.PubMedGoogle Scholar
  47. 47.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MJ, 1989. Studies of the HER-2/new proto-oncogene in human breast and ovarian cancer. Science 244:707–712.PubMedCrossRefGoogle Scholar
  48. 48.
    Hudziak RM, Schlesinger J, Ullrich A, 1987. Increased expression of the putative growth factor receptor pl85 HER-2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA 84:7159–7163.PubMedCrossRefGoogle Scholar
  49. 49.
    DiFore PP, Pierce JH, Kraus MH, Egatto OS, Richter King C, Aaronson SA, 1987. B-2 is a potent oncogene when overexpressed in NIH-3T3 cells. Science 237:178–182.CrossRefGoogle Scholar
  50. 50.
    Lavialle C, Modjtahedi N, Cassingena R, Brison O, 1988. High c-myc amplification level contributes to the tumorigenic phenotype of the human breast carcinoma cell line SW 613-S. Oncogene 3:335–339.PubMedGoogle Scholar
  51. 51.
    Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D, 1985. Association of copies of the N-myc oncogene and rapid progression of neuroblas-tomas. N Engl J Med 313:1111–1116.PubMedCrossRefGoogle Scholar
  52. 52.
    Slamon DJ, Clark GM, 1988. Amplification of c-erbB-2 and aggressive human breast tumors. Science 240:1796–1798.PubMedCrossRefGoogle Scholar
  53. 53.
    van de Vijver MJ, Mooi WJ, Wisman P, Peterse JL, Nusse R, 1988. Immunohistochemical detection of the neu protein in tissue sections of human breast tumors with amplified neu DNA. Oncogene 2:175–178.PubMedGoogle Scholar
  54. 53A.
    Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, Schlessinger J, Lippman ME, King CR, 1990. Pathologic Findings from the National Surgical Adjuvant Breast and Bowel Project: Prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8:103–112.PubMedGoogle Scholar
  55. 54.
    Tandon AK, Clark GM, Chamness GC, Ullrich A, McGuire WL, 1989. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 7:1120–1128.PubMedGoogle Scholar
  56. 55.
    Barnes DM, Lammie GA, Millis RR, Gullick WL, Allen DS, Altman DG, 1988. An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. Br J Cancer 58:448–452.PubMedCrossRefGoogle Scholar
  57. 56.
    van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, Nusse R, 1988. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319:1239–1245.PubMedCrossRefGoogle Scholar
  58. 57.
    Gusterson BA, Machin LG, Gullick WJ, Gibbs NM, Powles TJ, Elliott C, Ashley S, Monaghan P, Harrison S, 1988. c-erbB-2 expression in benign and malignant breast disease. Br J Cancer 58:453–457.PubMedCrossRefGoogle Scholar
  59. 58.
    Wright C, Angus B, Nicholson S, Sainsbury JRC, Cairns J, Gullick WJ, Kelly P, Harris AL, Wilson Horne CH, 1989. Expression of c-erbB-2 oncoprotein: A prognostic indicator in human breast cancer. Cancer Res 49:2087–2090.PubMedGoogle Scholar
  60. 59.
    Gusterson BA, Machin LG, Gullick WJ, Gibbs NM, Powles TV, Price P, McKinna A, Harrison S, 1988. Immunohistochemical distribution of c-erbB-2 in infiltrating and in situ breast cancer. Int J Cancer 42:842–845.PubMedCrossRefGoogle Scholar
  61. 60.
    Schnitt SJ, Silen W, Sadowsky NL, Connolly JL, Harris JR, 1988. Ductal carcinoma in situ (intraductal carcinoma) of the breast. N Engl J Med 318:898–903.PubMedCrossRefGoogle Scholar
  62. 61.
    Lippman MV, 1988. Oncogenes and breast cancer (editorial). N Engl J Med 319:1281–1282.PubMedCrossRefGoogle Scholar
  63. 62.
    Walker RA, Wilkinson N, 1988. p21 ras protein expression in benign and malignant human breast. J Path 156:147–153.PubMedCrossRefGoogle Scholar
  64. 63.
    Horan Hand P, Vilasi V, Thor A, Ohuchi N, Schlom J, 1987. Quantitaton of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 79:59–65.Google Scholar
  65. 64.
    Tanaka T, Slamon DJ, Battifora J, Cline MJ, 1986. Expression of p21 ras oncoproteins in human cancers. Cancer Res 46:1465–1470.PubMedGoogle Scholar
  66. 65.
    Weinberg RA, 1985. The action of oncogenes in the cytoplasm and nucleus. Science 230:770–776.PubMedCrossRefGoogle Scholar
  67. 66.
    Rochlitz CF, Scott GK, Dodson JM, Liu E, Dollbaum C, Smith HS, Benz CC, 1989. Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360.PubMedGoogle Scholar
  68. 67.
    Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R, 1986. Loss of a c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46:4776–4781.PubMedGoogle Scholar
  69. 68.
    Spandidos DA, Agnantis NJ, 1984. Human malignant tumors of the breast, as compared to their respective normal tissue, have elevated expression of the Harvey ras oncogene. Anticancer Res 4:269–272.PubMedGoogle Scholar
  70. 69.
    Agnantis NJ, Petraki C, Markoulatos P, Spandidos DA, 1986. Immunohistochemical study of the ras oncogene expression in human breast lesions. Anticancer Res 6:1157–1160.PubMedGoogle Scholar
  71. 70.
    Thor A, Ohuchi N, Horan Hand P, Callahan R, Weeks MO, Theillet C, Lidereau R, Escot C, Page DL, Vilasi V et al., 1986. ras gene alterations and enhanced levels ofrasp21 expression in a spectrum of benign and malignant human mammary tissues. Lab Invest 55:603–615.PubMedGoogle Scholar
  72. 71.
    Ohuchi N, Thor A, Page DL, Horan Hand P, Halter S, Schlom J, 1986. Expression of the 21,000 molecular weightrasprotein in a spectrum of benign and malignant human mammary tissues. Cancer Res 46:2511–2519.PubMedGoogle Scholar
  73. 72.
    Lundy J, Grimson R, Mishriki Y, Chao S, Oravez S, Fromowitz F, Viola MV, 1986. Elevatedrasoncogene expression correlates with lymph node metastases in breast cancer patients. J Clin Oncol 4:1321–1325.PubMedGoogle Scholar
  74. 73.
    Querzoli P, Marchetti E, Bagni A, Marzola A, Fabris G, Nenci I, 1988. Expression of p21rasgene products in breast cancer relates to histological types and to receptor and nodal status. Breast Cancer Res Treat 12:23–30.PubMedCrossRefGoogle Scholar
  75. 74.
    Agnantis NJ, Parissi P, Anagnostakis D, Spandidos DA, 1986. Comparative study of Harvey-ras oncogene expression with conventional clinicopathologic parameters of breast cancer. Oncology 43:36–39.PubMedCrossRefGoogle Scholar
  76. 75.
    Clair T, Miller WR, Cho-Chung YS, 1987. Prognostic significance of the expression of arasprotein with a molecular weight of 21,000 by human breast cancer. Cancer Res 47:5290–5293.PubMedGoogle Scholar
  77. 76.
    Capon DJ, Chen EY, Levinson AD, Sieburg PH, Goeddel DV, 1983. Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302:33–37.PubMedCrossRefGoogle Scholar
  78. 77.
    Krontinis TG, DiMartino NA, Colb M, Partinson DA, 1985. Unique allelic restriction fragments of the human Ha-ras locus in leukocyte and tumor DNAs of cancer patients. Nature 313:369–374.CrossRefGoogle Scholar
  79. 78.
    Lidereau R, Escot C, Theillet C, Champeme MH, Brunet M, Gest J, Callahan R, 1987. High frequency of rare alleles of the human c-Ha-ras-l proto-oncogene in breast cancer patients. J Natl Cancer Inst 77:697–701.Google Scholar
  80. 79.
    Saglio G, Camaschella C, Giai M, Serra A, Guerrasio A, Pierone B, Gasparini P, Mazza U, Cepellini R, Biglia N, Cortese P, Sismondi P, 1988. Distribution of Ha-ra.s-1 proto-oncogene alleles in breast cancer patients and in a control population. Breast Cancer Res Treat 11:147–153.PubMedCrossRefGoogle Scholar
  81. 80.
    Corell B, Zoll B, 1988. Comparison between the allelic frequency distribution of the Ha-ras-1 locus in normal individuals and patients with lymphoma, breast, and ovarian cancer. Hum Genet 79:255–259.PubMedCrossRefGoogle Scholar
  82. 81.
    Sheng ZM, Guerin M, Gabillot M, Spielmann M, Riou G, 1988. c-Ha-ras-1 polymorphism in human breast carcinomas: Evidence for a normal distribution of alleles. Oncogene Res 79:255–259.Google Scholar
  83. 82.
    White GRM, Heighway J, Williams GT, Scott D, 1988. Constitutional frequency of rare alleles of c-Ha-ras in breast cancer patients. Br J Cancer 57:526.Google Scholar
  84. 83.
    Ali IU, Lidereau R, Theillet C, Callahan R, 1987. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 238:185–188.PubMedCrossRefGoogle Scholar
  85. 84.
    Mackay J, Elder PA, Porteous DJ, Steel CM, Hawkins RA, Going JJ, Chetty U, 1988. Partial deletion of chromosome llp in breast cancer correlates with size of primary tumour and oestrogen receptor level. Br J Cancer 58:710–714.PubMedCrossRefGoogle Scholar
  86. 85.
    Law ML, Kao FT, Wei Q, Hartz JA, Greene GL, Zaruchi-Schulz T, Conneely OM, Jones C, Puck TT, O’Malley BW, et al., 1987. The progesterone receptor gene maps to human chromosome band 11ql3, the site of the mammary oncogene int-2. Proc Natl Acad Sci USA 84:2877–2881.PubMedCrossRefGoogle Scholar
  87. 86.
    Friend SH, Dryja TP, Weinberg RA, 1988. Oncogenes and tumor-suppressing genes. N Engl J Med 318:618–622.PubMedCrossRefGoogle Scholar
  88. 87.
    Levine EG, King RA, Bloomfield CD, 1989. The role of heredity in cancer. J Clin Oncol 7:527–540.PubMedGoogle Scholar
  89. 88.
    Spector DL, Watt RA, Sullivan NF, 1987. The v-and c-myc oncogene protcins colocalizc in situ with small nuclear ribonucleoprotein particles. Oncogene 1:5–12.PubMedGoogle Scholar
  90. 89.
    Studzinski GB, Brelvi ZS, Feldman SC, Watt RA, 1986. Participation of c-myc protein in DNA synthesis of human cells. Science 234:436–470.CrossRefGoogle Scholar
  91. 90.
    Dalla-Favera R, Bregni M, Erikson J, Paterson D, Gallo RC, Croce CM, 1982. Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827.PubMedCrossRefGoogle Scholar
  92. 91.
    Rowley JD, 1984. Biochemical implications of consistent chromosome rearrangements in leukemia and lymphoma. Cancer Res 44:3159–3168.PubMedGoogle Scholar
  93. 92.
    Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD, 1983. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196.PubMedCrossRefGoogle Scholar
  94. 93.
    Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM, 1983. Homogeneously staining chromosomal regions contain amplified copies of abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1797–1811.CrossRefGoogle Scholar
  95. 94.
    Kozbor D, Croce CM, 1984. Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 44:438–441.PubMedGoogle Scholar
  96. 95.
    Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R, 1986. Genetic alteration of the c-myc proto-oncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA 83:4834–4838.PubMedCrossRefGoogle Scholar
  97. 96.
    Bonilla M, Ramirez M, Lopez-Cueto J, Gariglio P, 1988. In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. J Natl Cancer Inst 80:665–671.Google Scholar
  98. 97.
    Lidereau R, Callahan R, Dickson C, Peters G, Escot C, Ali IU, 1988. Amplification of the int-2 gene in primary human breast tumors. Oncogene Res 2:285–291.PubMedGoogle Scholar
  99. 98.
    Varley JM, Walker RA, Casey G, Brammar WJ, 1988. A common alteration to the int-2 proto-oncogene in DNA from primary breast carcinomas. Oncogene 3:87–91.Google Scholar
  100. 99.
    Zhou DJ, Casey G, Cline MJ, 1988. Amplification human int-2 in breast cancers and squamous carcinomas. Oncogene 2:279–282.PubMedGoogle Scholar
  101. 100.
    T’ang A, Varley JM, Chakraborty S, Murphree AL, Fung YT, 1988. Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science 242:262–266.Google Scholar
  102. 101.
    Harbour JW, Lai S, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ, 1988. Abnormalities in structure and expression of the human retinoblastoma gene in small cell lung cancer. Science 241:353–357.PubMedCrossRefGoogle Scholar
  103. 102.
    Milelman F, 1985. Catalog of chromosome aberrations in cancer, 2nd edition. New York: Alan R. Liss.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Margaret C. Sunderland
  • William L. McGuire

There are no affiliations available

Personalised recommendations