Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 54))

Abstract

The primary function of the melanocyte in the skin is to synthesize an optically dense and active pigment, melanin, to protect cells of the epidermis and dermis from the deleterious effects of ultraviolet (UV) light. The pheno-typic characteristics of melanocytes have long been established. These are a) melanin production through the action of the cell-specific enzyme, tyrosinase; b) dendritic morphology; c) pigment donation via dendritic processes to adjacent keratinocytes; and d) unless specifically stimulated (i.e., by UV light), no detectable proliferation in situ. Despite the undetectable proliferation, a stable life-long 5–6:1 ratio is maintained between basal keratinocytes and melanocytes, suggesting a constant, controlled self-replication of epidermal pigmented cells. In this article we review the currently available data on maturation, growth requirements, and antigen expression of melanocytes and their interactions with keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirobe, T. (1982) Genes involved in regulating the melanocyte and melanoblast-melanocyte populations in the epidermis of newborn mouse skin. J. Exp. Zool. 223:257–264.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett, D.C., Bridges, K., McKay, I.A. (1985) Clonal separation of mature melanocytes from premelanocytes in a diploid human cell strain: Spontaneous and induced pigmentation of premelanocytes. J. Cell. Sci. 77:167–183.

    PubMed  CAS  Google Scholar 

  3. Bennett, D.C. (1983) Differentiation in mouse melanoma cells: Initial reversibility and an on-off stochastic model. Cell 34:445–453.

    Article  PubMed  CAS  Google Scholar 

  4. Bennett, D.C. (1989) Mechanisms of differentiation in melanoma cells and melanocytes. Environ. Health Persp. 80:49–59.

    Article  CAS  Google Scholar 

  5. Staricco, R.G. (1963) Amelanotic melanocytes in the outer sheath of the human hair follicle and their role in the pigmentation of regenerated epidermis. Ann. N.Y. Acad. Sci. 100:239–255.

    PubMed  CAS  Google Scholar 

  6. Hu, F., Staricco, R.J., Pinkus, H., Fosnaugh, R. (1957) Human melanocytes in tissue culture. J. Invest. Dermatol. 28:15–32.

    PubMed  CAS  Google Scholar 

  7. Karasek, M., Charlton, M.E. (1980) Isolation and growth of normal human skin melanocytes. Clin. Res. 28:570A.

    Google Scholar 

  8. Kitano, Y. (1976) Stimulation by melanocyte stimulating hormone and dibutyryl adenosine 3′5′-cyclic monophosphate of DNA synthesis in human melanocytes in vitro. Arch. Derm. Res. 257:47–52.

    Article  CAS  Google Scholar 

  9. Mayer, T.C. (1982) The control of embryonic pigment cell proliferation in culture by cyclic AMP. Dev. Biol. 94:509–614.

    Article  PubMed  CAS  Google Scholar 

  10. Wilkins, L.M., Szabo, G.C. (1981) Use of mycostatin-supplemented media to establish pure epidermal melanocyte culture (abstract). J. Invest. Dermatol. 76:332.

    Google Scholar 

  11. Eisinger, M., Marko, O. (1982) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc. Natl. Acad. Sci. USA 79:2018–2022.

    Article  PubMed  CAS  Google Scholar 

  12. Gilchrest, B.A., Vrabel, M.A., Flynn, E., Szabo, G. (1984) Selective cultivation of human melanocytes from newborn and adult epidermis. J. Invest. Dermatol. 83:370–376.

    Article  PubMed  CAS  Google Scholar 

  13. Rosdahl, I.K., Szabo, G. (1978) Mitotic activity of epidermal melanocytes in UV-irradiated mouse skin. J. Invest. Dermatol. 70:143–148.

    Article  PubMed  CAS  Google Scholar 

  14. Friedman, P.S., Gilchrest, B.A. (1987) Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J. Cell. Physiol. 133:88–94.

    Article  Google Scholar 

  15. Libow, L.F., Scheide, S., DeLeo, V.A. (1988) Ultraviolet radiation acts ac an independent mitogen for normal human melanocytes in culture. Pigment Cell Res. 1:397–401.

    Article  PubMed  CAS  Google Scholar 

  16. Stierner, U., Rosdahl, I., Augustsson, A., Kagedal, B. (1989) UVB irradiation induces melanocyte increase in both exposed and shielded human skin. J. Invest. Dermatol. 92:561–564.

    Article  PubMed  CAS  Google Scholar 

  17. Halaban, R., Ghosh, S., Baird, A. (1987) bFGF is the putative natural growth factor for human melanocytes. In Vitro 23:47–52.

    CAS  Google Scholar 

  18. Halaban, R., Kwon, B.S., Ghosh, S., Delli Bovi, P., Baird, A. (1988) bFGF as an autocrine growth factor for human melanomas. Oncogene Res. 3:177–186.

    PubMed  CAS  Google Scholar 

  19. Rodeck, U., Herlyn, M., Menssen, H.D., Furlanetto, R.W., Koprowski, H. (1987) Metastatic but not primary melanoma cell lines grow in vitro independently of exogenous growth factors. Int. J. Cancer 40:687–690.

    Article  PubMed  CAS  Google Scholar 

  20. Herlyn, M., Rodeck, U., Mancianti, M.L., Cardillo, F.M., Lang, A., Ross, A.H., Jambrosic, J., Koprowski, H. (1987) Expression of melanoma-associated antigens in rapidly dividing human melanocytes in culture. Cancer Res. 47:3057–3061.

    PubMed  CAS  Google Scholar 

  21. Herlyn, M., Clark, W.H., Rodeck, U., Mancianti, M.L., Jambrosic, J., Koprowski, H. (1987) Biology of tumor progression in human melanocytes. Lab. Invest. 56:461–474.

    PubMed  CAS  Google Scholar 

  22. Pittelkow, M.R., Shipley, G.D. (1989) Serum-free culture of normal human melanocytes: Growth kinetics and growth factor requirements. J. Cell. Physiol. 140:565–576.

    Article  PubMed  CAS  Google Scholar 

  23. Herlyn, M., Mancianti, M.L., Jambrosic, J., Bolen, J.B., Koprowski, H. (1988) Regulatory factors that determine growth and phenotype of normal human melanocytes. Exp. Cell Res. 179:322–331.

    Article  PubMed  CAS  Google Scholar 

  24. Abdel-Malek, Z. A. (1988) Endocrine factors as effectors of integumental pigmentation. In: Dermatologic Clinics, Vol. 6. W.B. Saunders, Philadelphia, pp. 175–184.

    Google Scholar 

  25. Adashi, E.Y., Resnick, C.E., Svoboda, M.E., Van Wyk, J.J. (1986) Follicle-stimulating hormone enhances somatomedin C binding to cultured rat granulosa cells. J. Biol. Chem. 261(9):3923–3926.

    PubMed  CAS  Google Scholar 

  26. Halaban, R., Pomeranz, S.H., Marshall, S., Lambert, D.T., Lerner, A.B. (1983) Regulation of tyrosinase in human melanocytes grown in culture. J. Cell Biol. 97:480–488.

    Article  PubMed  CAS  Google Scholar 

  27. Spiegel, S., Fishman, P.H. (1987) Gangliosides as bimodal regulators of cell growth. Proc. Natl. Acad. Sci. USA 84:141–145.

    Article  PubMed  CAS  Google Scholar 

  28. Niedel, J.E., Blackshear, P.J. (1986) Protein kinase C. In: Phosphoinositides and Receptor Mechanisms, Alan R. Liss, New York, pp. 47–88.

    Google Scholar 

  29. Halaban, R. (1988) Responses of cultured melanocytes to defined growth factors. Pigm. Cell. Res. Suppl. 1:18–26.

    Article  Google Scholar 

  30. Tomita, Y., Kazuhisa, M., Hachiro, T. (1988) Stimulatory effect of histamine on normal human melanocytes in vitro. Tohoku J. Exp. Med. 155:209–210.

    Article  PubMed  CAS  Google Scholar 

  31. Frankel, T.L., Mason, R.S., Hersey, E., Posen, S. (1983) The synthesis of vitamin D metabolites by human melanoma cells. J. Clin. Endocrinol. Metab. 57:627–631.

    Article  PubMed  CAS  Google Scholar 

  32. Bikle, D.D., Nemanic, M.K., Gee, E., Elias, P. (1986) 1,25-dihydroxyvitamin D3 production by human keratinocytes. J. Clin. Invest. 78:557–566.

    Article  PubMed  CAS  Google Scholar 

  33. Tomita, Y., Torinuki, W., Tagami, H. (1988) Stimulation of human melanocytes by vitamin D3 possibly mediates skin pigmentation after sun exposure. J. Invest. Dermatol, 90:882–884.

    Article  PubMed  CAS  Google Scholar 

  34. Tomita, Y., Iwamoto, M., Masuda, T., Tagami, H. (1987) Stimulatory effect of prostaglandin E2 on the configuration of normal human melanocytes in vitro. J. Invest. Dermatol. 89:299–301.

    Article  PubMed  CAS  Google Scholar 

  35. Abdel-Malek, Z.A., Ross, R., Trinkle, L., Swope, V., Pike, J.W., Nordlund, J.J. (1988) Hormonal effects of vitamin D3 on epidermal melanocytes. J. Cell. Physiol. 136:273–280.

    Article  PubMed  CAS  Google Scholar 

  36. Ranson, M., Posen, S., Mason, R.S. (1988) Extracellular matrix modulates the function of human melanocytes but not melanoma cells. J. Cell. Physiol. 136:281–288.

    Article  PubMed  CAS  Google Scholar 

  37. Houghton, A.N., Eisinger, M., Albino, A.P., Cairncross, J.G., Old, L.J. (1982) Surface antigens of melanocytes and melanomas: Markers of melanocyte differentiation and melanoma subsets. J. Exp. Med. 156:1755–1766.

    Article  PubMed  CAS  Google Scholar 

  38. Herlyn, M., Koprowski, H. (1988) Melanoma antigens: Immunological and biological characterization and clinical significance. Ann. Rev. Immunol. 6:283–308.

    Article  CAS  Google Scholar 

  39. Elder, D.E., Rodeck, U., Thurin, J., Cardillo, F., Clark, W.H., Stewart, R., Herlyn, M. (1989) Antigenic profile of tumor progression stages in human melanocyte nevi and melanomas. Cancer Res. 49:5091–5096.

    PubMed  CAS  Google Scholar 

  40. Houghton, A.N., Albino, A.P., Cordon-Cardo, C., Davis, L.J., Eisinger, M. (1988) Cell surface antigens of human melanocytes and melanoma: Expression of adenosine deaminase binding protein is extinguished with melanocyte transformation. J. Exp. Med. 167:197–212.

    Article  PubMed  CAS  Google Scholar 

  41. Willie, J.J., Pittelkow, M.R., Scott, R.E. (1985) Normal and transformed human prokerantinocytes express divergent effects of a tumor promoter on cell cycle-mediated control of proliferation and differentiation. Carcinogenesis. 6:1181–1187.

    Article  Google Scholar 

  42. Boyce, S.T., Harn, R.G. (1983) Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81:33s–40s.

    Article  PubMed  CAS  Google Scholar 

  43. Pittelkow, M.R., Scott, R.E. (1986) New techniques for the in vitro culture of human skin keratinocytes and perspectives on their use for grafting of patients with extensive burns. Mayo Clin. Proc. 61:771–777.

    PubMed  CAS  Google Scholar 

  44. Halaban, R., Langdon, R., Birchall, N., Cuono, C., Baird, A., Scott, G., Moellmann, G., McGuire, J. (1988) Basic fibroblast growth factor from human keratinocytes in a natural mitogen for melanocytes. J. Cell Biol. 107:1611–1619.

    Article  PubMed  CAS  Google Scholar 

  45. Valyi-Nagy, I.T., Murphy, G.F., Mancianti, M.L., Whitaker, D., Herlyn, M. (1990) Phenotypes and interactions of human melanocytes and keratinocytes in an epidermal reconstruction model. Lab. Invest., in press.

    Google Scholar 

  46. DeLuca, M., Franzi, A.T., D’Anna, F., Zicca, A., Albanese, E., Bondanza, S., Cancedda, R. (1988) Coculture of human keratinocytes and melanocytes: Differentiated melanocytes are physiologically organized in the basal layer of the cultured epithelium. Eur. J. Cell Biol. 46:176–180.

    CAS  Google Scholar 

  47. DeLuca, M., D’Anna, F., Bondanza, S., Franzi, A.T., Cancedda, R. (1988) Human epithelial cells induce human melanocyte growth in vitro but only skin keratinocytes regulate its proper differentiation in the absence of dermis. J. Cell. Biol. 107:1919–1926.

    Article  CAS  Google Scholar 

  48. Bertaux, B., Moliere, P., Moreno, G., Courtalon, A., Masse, J.M., Dubertet, L. (1988) Growth of melanocytes in a skin equivalent model in vitro. Br. J. Dermatol. 119:503–512.

    Article  PubMed  CAS  Google Scholar 

  49. Gordon, P.R., Mansur, C.P., Gilchrest, B.A. (1989) Regulation of human melanocyte growth, dendricity, and melanization by keratinocyte derived factors. J. Invest. Dermatol. 92:565–572.

    Article  PubMed  CAS  Google Scholar 

  50. Coffey, R.J., Jr., Derynck, R., Wilcox, J.N., Bringman, T.S., Goustin, A.S., Moses, H.L., Pittelkow, M.R. (1987) Production and auto-induction of transforming growth factor-alpha in human keratinocytes. Nature 328:817–820.

    Article  PubMed  CAS  Google Scholar 

  51. Kupper, T.S., Chua, A.O., Flood, P., McGuire, J., Gubler, U. (1987) Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J. Clin. Invest. 80:430–436.

    Article  PubMed  CAS  Google Scholar 

  52. Luger, T.A., Kock, A., Danner, M., Colot, M., Micksche, M. (1985) Production of distinct cytokines by epidermal cells. Br. J. Dermatol. 113(Suppl. 28): 145–156.

    Article  PubMed  CAS  Google Scholar 

  53. Yaar, M., Palleroni, A.V., Gilchrest, B.A. (1986) Normal human epidermis contains an interferon-like protein. J. Cell. Biol. 103:1349–1354.

    Article  PubMed  CAS  Google Scholar 

  54. Torseth, J.W., Nickoloff, B.J., Basham, T.Y., Merigan, T.C. (1987) Beta interferon produced by keratinocytes in human cutaneous infection with herps simplex virus. J. Invest. Dis. 155:641–648.

    Article  CAS  Google Scholar 

  55. Grossman, R.M., Krueger, J., Yourish, D., Granelli-Piperno, A., Murphy, D.P., May, L.T., Kupper, T.S., Schgal, P.B., Gottlieb, A.B. (1989) Interleukin-6 in expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. USA 86:6367–6371.

    Article  PubMed  CAS  Google Scholar 

  56. Nickoloff, B.J. (1988) Keratinocytes produce a lymphocyte inhibitory factor which is partially reversible by an antibody to transforming growth factor-beta. Ann. N.Y. Acad. Sci. 548:312–320.

    Article  PubMed  CAS  Google Scholar 

  57. Wikner, N.E., Persichitte, K.A., Baskin, J.B., Nielsen, L.D., Clark, R.A. (1988) Transforming growth factor-beta stimulates the expression of fibronection by human keratinocytes. J. Invest. Dermatol. 91:207–212.

    Article  PubMed  CAS  Google Scholar 

  58. Kupper, T.S., Lee, F., Goleman, D., Chodakewitz, J., Flood, D., Horowitz, M. (1988) Keratinocyte-derived T-cell growth factor is identical to granulocyte macrophage colony stimulating factor (GM-SCF). J. Invest. Dermatol. 91:185–188.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valyi-Nagy, I.T., Herlyn, M. (1991). Regulation of growth and phenotype of normal human melanocytes in culture. In: Nathanson, L. (eds) Melanoma Research: Genetics, Growth Factors, Metastases, and Antigens. Cancer Treatment and Research, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3938-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3938-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6757-4

  • Online ISBN: 978-1-4615-3938-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics