Pollution of the marine environment has compromised the quality and safety of many seafoods, particularly inshore molluscan shellfish. With population centers increasing along the coast, problems with oyster, clam, and mussel contamination are likely to increase. Autochthonous marine bacteria, like the vibrios, also pose a threat to humans who consume raw or undercooked shellfish.


Much Probable Number Pacific Oyster Crassostrea Virginica Manila Clam Hard Clam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akin, E. W., Hamblet, F. E., and Hill, W. F, Jr. 1966. Accumulation and depuration of polio virus by individual oysters. Gulf Coast Shellfish Sanitation Research Ctr., Dauphin Island, Alabama. Technical memorandum GCSSRC-FY66-5, 5 pp.Google Scholar
  2. Arcisz, W., and Kelly, C. B. 1955. Self-purification of the soft clam, Mya arenaria. Publ. Hlth. Rep. 70:605–614.CrossRefGoogle Scholar
  3. Ayres, P. A. 1975. The quantitative bacteriology of some commercial bivalve shellfish entering British markets. J. Hyg. Cambr. 74:431–440.CrossRefGoogle Scholar
  4. Ayres, P. A. 1978. Shellfish purification in installations using ultraviolet light. Ministry of Agriculture, Fisheries and Food. Fish Research Laboratory leaflet No. 43. Lowestoft, United Kingdom.Google Scholar
  5. Beck W. J., Kelly, C. B., Hoff, J. C, and Presnell, M. W. 1966. Bacterial depuration studies on West Coast shellfish. Presented at National Conference on Depuration, Kingston, Rhode Island.Google Scholar
  6. Belding, D. L., and Lane, F. C. 1909. The shellfisheries of Massachusetts: their present condition and extent. In: A Report Upon the Mollusk Fisheries of Massachusetts. Wright & Potter, Boston.Google Scholar
  7. Blogoslawski, W. J., and Stewart, M. E. 1983. Depuration and public health. J. World Maricult. Soc. 14:535–545.Google Scholar
  8. Blogoslawski, W. J., Stewart, M. E., Hurst, J. W., Jr., and Kern, F. G., III. 1979. Ozone disinfection of paralytic shellfish poison in the softshell clam (Mya arenaria). Toxicon 17:650–654.PubMedCrossRefGoogle Scholar
  9. Buisson, D. H., Fletcher, G. C, and Begg, C. W. 1981. Bacterial depuration of the Pacific oyster (Crassostrea gigas) in New Zealand. N.Z. J. Sci. 24:253–262.Google Scholar
  10. Cabelli, V. J., and Heffernan, W. P. 1970a. Accumulation of Escherichia coli by the northern quahaug. Appl. Microbiol. 19:239–244.PubMedGoogle Scholar
  11. Cabelli, V. J., and Heffernan, W. P. 1970b. Elimination of bacteria by the soft shell clam, Mya arenaria. J. Fish. Res. Bd. Can. 27:1579–1587.CrossRefGoogle Scholar
  12. Cabelli, V. J., and Heffernan, W. P. 1971. Seasonal factors relevant to conform levels in northern quahaugs. Proc. Natl. Shellfish Assoc. 61:95–101.Google Scholar
  13. Canzonier, W. J. 1971. Accumulation and elimination of coliphage S-13 by the hard clam, Mercenaria mercenaria. Appl. Microbiol. 21:1024–1031.Google Scholar
  14. Canzonier, W. J. 1982. Depuration of bivalve mollusks—what it can and cannot accomplish and some practical aspects of plant design and operation. In: Proceedings of the International Seminar on Management of Shellfish Resources. Irish Marine Farmers Association, Tralee, Ireland.Google Scholar
  15. Canzonier, W. J. 1984. Technical aspects of bivalve depuration plant operation: pipes, pumps and petri plates. In: O’Sullivan A. J. (ed.) Mussel Bound. Proceedings of the International Shellfish Seminar. Environmental Management Services. Bantry, Ireland, pp. 68–96.Google Scholar
  16. Capers, G. M., Tamplin, M. L., Martin, A. L., and Hopkins, L. H. 1990. Distribution and retention of Vibrio vulnificus in tissues of the Eastern oyster, Crassostrea virginica. Abstr. Annu. Meeting Am. Soc. Microbiol, p. 305.Google Scholar
  17. Carmelia, F. A. 1921. Hypochlorite process of oyster purification. Publ. Hlth. Ser. Rep. pp. 876–883.Google Scholar
  18. Chang, J. C. H., Ossoff, S. F., Lobe, D. C, Dorfman, M. H., Dumais, C. M., Quails, R. G., Johnson, J. B. 1985. U.V. inactivation of pathogenic and indicator microorganisms. Appl. Environ. Microbiol. 49:1361–1365.PubMedGoogle Scholar
  19. Cheng, T. C., and Rudo, B. M. 1976. Distribution of glycogen resulting from the degradation of 14C-labeled bacteria in the American oyster, Crassostrea virginica. J. Invert. Pathol. 27:259–262.CrossRefGoogle Scholar
  20. Clifton, R. J., Stevens, H. E., and Hamilton, E. I. 1983. Concentration and depuration of some radionuclides present in a chronically exposed population of mussels (Mytilus edulis). Marine Ecol. Prog. Ser. 11:245–256.CrossRefGoogle Scholar
  21. Colwell, R. R., and Liston, J. 1960. Microbiology of shellfish. Bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Appl. Microbiol. 8:104–109.PubMedGoogle Scholar
  22. Dahlgaard, H. 1981. Loss of 51Cr, 54Mn, 57Co, 59Fe, 65Zn, 134Cs by the mussel Mytilus edulus. In: International Symposium on the Impacts of Radionuclide Releases into the Marine Environment. IAEA, Vienna, pp. 361–370.Google Scholar
  23. Denton, G. R. W., and Burdon-Jones, C. 1981. Influence of temperature and salinity on the uptake, distribution and depuration of mercury, cadmium and lead by the black-lip oyster Saccostrea echinata. Marine Biol. 64:317–326.Google Scholar
  24. Di Girolamo, R., Liston, J., and Matches, J. 1975. Uptake and elimination of poliovirus by West Coast oysters. Appl. Microbiol. 29:260–264.PubMedGoogle Scholar
  25. Di Girolamo, R., Liston, J., and Matches, J. 1977. Ionic bonding, the mechanism of viral uptake by shellfish mucus. Appl. Environ. Microbiol. 33:19–25.PubMedGoogle Scholar
  26. Dodgson, R. W. 1928. Report on mussel purification. Ministry of Agriculture and Fisheries. Fish. Invest. Ser. II. 10:1–436.Google Scholar
  27. Dodgson, R. W. 1936. Shellfish and the public health. Br. Med. J. 2:169–173.CrossRefGoogle Scholar
  28. Durgin, O. B., Metcalf, T. G., Moulton, E. R., and Hurst, J. W., Jr. 1981. Viral monitoring of commercial shellfish. Contract no. 223-78-2228, U.S. Food and Drug Admin., Washington, DC, 52 pp.Google Scholar
  29. Eyles, M. J., and Davey, G. R. 1984. Microbiology of commercial depuration of the Sydney rock oyster, Crassostrea commercialis. J. Food Protect. 47:703–706.Google Scholar
  30. Fauvel, Y., Pons, G., and Legeron, J. P. 1982. Ozonation de l’eau de mer et epuration des coquillages. Sci. Peche Nantes 320:1–16.Google Scholar
  31. Feng, S. Y. 1965. Pinocytosis of proteins by oyster leucocytes. Biol. Bull. 128:95–105.CrossRefGoogle Scholar
  32. Feng, S. Y. 1967. Responses of molluscs to foreign bodies, with special reference to the oyster. Fed. Proc. 26:1685–1692.PubMedGoogle Scholar
  33. Fleet, G. H. 1978. Oyster depuration—a review. Food Technol. Aust. 30:444–454.Google Scholar
  34. Fogh, J. 1955. Ultraviolet light inactivation of poliomyelitis virus. Proc. Soc. Exp. Biol. Med. 89:464–465.PubMedGoogle Scholar
  35. Fossato, V. U., and Canzonier, W. J. 1976. Hydrocarbon uptake and loss by the mussel Mytilus edulis. Marine Biol. 36:243–250.CrossRefGoogle Scholar
  36. Frost, H. W. 1925. Report of committee on the sanitary control of the shellfish industry in the United States. Publ. Hlth. Rep. (Suppl.) 53:1–17.Google Scholar
  37. Furfari, S. A. 1966. Depuration plant design. Public Health Service Publ. No. 999-FP-7. U.S. Dept. of Health, Education and Welfare, Washington, DC, 119 pp.Google Scholar
  38. Furfari, S. A. 1976. Shellfish purification: a review of current technology. FAO Technical Conference on Aquaculture, Publ. FIR:AQ/Conf/76/R.ll. Kyoto, Japan, 16 pp.Google Scholar
  39. Galtsoff, P. S. 1946. Reaction of oysters to chlorination. U.S. Fish and Wildlife Serv. Res. Rept. 11, U.S. Government Printing Office, Washington, DC.Google Scholar
  40. Gazzetta Ufficiale Delia Repubblica Italiana. 1978. Supplemento ordinario alia Gazzetta Ufficiale 125:12–14.Google Scholar
  41. Goggins, P. L. 1964. Depuration in Maine. In: Houser, L. S. (ed.) Proceedings of the Fifth National Shellfish Sanitation Workshop U.S. Food and Drug Administration, Washington, DC, pp. 78–92.Google Scholar
  42. Goggins, P. L., Hurst, J. W., and Mooney, P. B. 1964. Soft clam depuration studies. Laboratory studies on shellfish purification. Maine Department of Sea and Shore Fisheries, Augusta, Maine, pp. 19–35ff.Google Scholar
  43. Greenberg, E. P., Dubois, M., and Palhof, B. 1982. The survival of marine vibrios in Mercenaria mercenaria, the hardshell clam. J. Food Safety 4:113–123.CrossRefGoogle Scholar
  44. Grohmann, G. S., Murphy, A. M., Christopher, P. J., Auty, G., and Greenberg, H. B. 1981. Norwalk virus gastroenteritis in volunteers consuming depurated oysters. Aust. J.Exp. Biol. Med. Sci. 59:219–228.PubMedCrossRefGoogle Scholar
  45. Hamblet, F. E., Hill, W. F., Jr., Akin, E. W., and Benton, W. H. 1969. Oysters and human viruses: effects of seawater turbidity on poliovirus uptake and elimination. Am. J. Epidemiol. 89:562–571.PubMedGoogle Scholar
  46. Haven, D. S., Perkins, F. O., Morales-Alamo, R., and Rhodes, M.W. 1978. Bacterial depuration by the Eastern Oyster (Crassostrea virginica) under controlled conditions. Vol. 1. Biological and technical studies. Special Scientific Report No. 88. Virginia Institute of Marine Science, Gloucester Point, Virginia, p. 64ff.Google Scholar
  47. Hay, B., and Scotti, P. 1986. Evidence for intracellular adsorption of virus by the Pacific oyster, Crassostrea gigas. N.Z. J. Marine Freshwater Res. 20:655–659.CrossRefGoogle Scholar
  48. Heffernan, W. P., and Cabelli, V. J. 1970. Elimination of bacteria by the northern quahaug (Mercenaria mercenaria): environmental parameters significant to the process. J. Fish Res. Bd. Can. 27:1569–1577.CrossRefGoogle Scholar
  49. Heffernan, W. P., and Cabelli, V. J. 1971. The elimination of bacteria by the northern quahaug: variability in the response of individual animals to the development of criteria. Proc. Natl. Shellfish Assoc. 61:102–108.Google Scholar
  50. Herdman, W. A., and Boyce, R. 1899. Oysters and disease. An account of certain observations upon the normal and pathological histology and bacteriology of the oyster and other shellfish. Lancashire Sea-Fisheries Memoir No. 1, London, pp. 35–40.Google Scholar
  51. Herdman, W. A., and Scott, A. 1896. Report on the investigations carried on in 1895 in connection with the Lancashire Sea-Fisheries Laboratory at the University College, Liverpool. Proc. Trans. Liverpool Biol. Soc. 10:103–174.Google Scholar
  52. Hill W. F., Hamblet, F. E., and Akin, E. W. 1967. Survival of poliovirus in flowing turbid seawater treated with ultraviolet light. Appl. Microbiol. 15:533–536.PubMedGoogle Scholar
  53. Hill, W. F., Jr., Akin, E. W., Hamblet, F. E., and Benton, W. H. 1969a. Poliovirus uptake and elimination by the American oyster, Crassostrea virginica. Proc. Natl. Shellfisheries Assoc. 60:5.Google Scholar
  54. Hill, W. F., Jr., Hamblet, F. E., and Benton, W. H. 1969b. Inactivation of poliovirus type 1 by the Kelly-Purdy ultraviolet seawater treatment unit. Appl. Microbiol. 17:1–6.PubMedGoogle Scholar
  55. Hill, W. F. Jr., Hamblet, F. E., Benton, W. H., and Akin, E. W. 1970. Ultraviolet devitalization of eight selected enteric viruses in estuarine water. Appl. Microbiol. 19:805–812.PubMedGoogle Scholar
  56. Hoff, J. C, and Becker, R. C. 1969. The accumulation and elimination of crude and clarified poliovirus suspensions by shellfish. Am. J. Epidemiol. 90:53–61.PubMedGoogle Scholar
  57. Hoff, J. C, Jakubowski, W., and Beck, W. J. 1966. Studies on bacteriophage accumulation and elimination by the Pacific oyster (Crassostrea gigas). In: Beck W. J., and Hoff J. C. (eds.) 1965 Proceedings of the Northwest Shellfish Sanitation Research Planning Conference U.S. Public. Health Service Publ. No. 999-FP-6, Washington, DC, pp. 74–90.Google Scholar
  58. Institute of Maritime Fisheries. 1972. Use of ozone in sea water for cleansing shellfish. Effluent Water Treatment J. 12:260–262.Google Scholar
  59. Jackim, E., and Wilson L, 1977. Benzo (a) pyrene accumulation and depuration in the soft-shell clam (Mya arenaria). In: Wilt D.S. (ed.) Proceedings of the Tenth National Shellfish Sanitation Workshop. Hunt Valley, Maryland, pp. 91–94.Google Scholar
  60. Katzenelson, E., Kletter, B., and Shuval, H. I. 1974. Inactivation kinetics of viruses and bacteria by use of ozone. J. Am. Water Works Assoc. 66:725–729.Google Scholar
  61. Kelly, C. B. 1961a. Accumulation of bacteria by the Pacific and Olympia Oysters. Paper read at Shellfish Sanitation Research Conference, Purdy, Washington.Google Scholar
  62. Kelly, C. B. 1961b. Disinfection of seawater by ultraviolet radiation. Am. J. Pub. Hlth. 51:1670–1680.CrossRefGoogle Scholar
  63. Kelly, M. T., and Dinuzzo, A. 1985. Uptake and clearance of Vibrio vulnificus from Gulf Coast oysters (Crassostrea virginica). Appl. Environ. Microbiol. 50:1548–1549.PubMedGoogle Scholar
  64. Kreger. A., De Chatelet, L., and Shirley, P. 1981. Interaction of Vibrio vulnificus with polymorphonuclear leukocytes: association of virulence with resistance to phagocytosis. J. Infect. Dis. 144:244–248.PubMedCrossRefGoogle Scholar
  65. Ledo, A., Gonzalez, E., Barja, J. L., and Toranzo, A. E. 1983. Effect of depuration systems on the reduction of bacteriological indicators in cultured mussels (Mytilus edulis Linnaeus). J. Shellfish Res. 3:59–64.Google Scholar
  66. Lewis, G., Loutit, M. W., and Austin, F. J. 1986. Enteroviruses in mussels and marine sediments and depuration of naturally accumulated viruses by green lipped mussels (Perna canaliculus). N.Z. J. Marine Freshwater Res. 20:431–437.CrossRefGoogle Scholar
  67. Liu, O.C. 1968. Appraisal and planning of virus research program. Northeast Shellfish Sanitation Research Center, U.S. Public Health Service, Narrangansett, Rhode Island, 38 pp.Google Scholar
  68. Liu, O. C, Seraichekas, H. R., and Murphy, B. L. 1966a. Fate of poliovirus in northern quahaugs. Proc. Soc. Exp. Biol. Med. 121:601–607.PubMedGoogle Scholar
  69. Liu, O. C, Seraichekas, H. R., and Murphy, B. L. 1966b. Viral pollution in shellfish. 1. Some basic facts of uptake. Proc. Soc. Exp. Biol. Med. 123:481–487.PubMedGoogle Scholar
  70. Liu, O. C, Seraichekas, H.R., and Murphy, B. L. 1967a. Viral pollution and self-cleansing mechanisms of hard clams. In: Berg G. (ed.) Transmission of Viruses by the Water Route. Interscience Publishers, New York, pp. 419–437.Google Scholar
  71. Liu, O. C, Seraichekas, H. R, and Murphy, B. L. 1967b. Viral depuration of the northern quahaug. Appl. Microbiol. 15:307–315.PubMedGoogle Scholar
  72. Loosanoff, V. L. 1961. Effects of turbidities on some larval and adult bivalves In: Proceedings of the Gulf and Caribean Fish Institute, Session 14, pp. 80–95.Google Scholar
  73. Lumsden, L. L., Hasseltine, H. E., Leak, J. P., and Veldee, M. V. 1925. A typhoid fever epidemic caused by oyster-borne infection. Pub. Hlth. Rep. (Suppl.) 50:1–102.Google Scholar
  74. MacMillan, R. B., and Redman, J. H. 1971. Hard clam cleansing in New York. Commercial Fish. Rev. 33:25–33.Google Scholar
  75. Marvel, P. 1902. Report of the New Jersey State Board of Health.Google Scholar
  76. Meinhold, A. F., and Sobsey, M. D. 1982. The uptake, elimination and tissue distribution of poliovirus in the American oyster, Crassostrea virginica. Abstr. Annu. Meeting Am. Soc. Microbiol, p. 181.Google Scholar
  77. Metcalf, T. G., and Stiles, W. C. 1965. The accumulation of enteric viruses by the American oyster, Crassostrea virginica. J. Infect. Dis. 115:68–76.Google Scholar
  78. Metcalf, T. G., Mullin B., Eckerson, D., Moulton, E., and Larkin, E. P. 1979. Bioaccumulation and depuration of enteroviruses by the soft-shelled clam, Mya arenaria. Appl. Environ. Microbiol. 38:275–282.Google Scholar
  79. Metcalf, T. G., Eckerson, D., Moulton, E., and Larkin, E. P. 1980. Uptake and depletion of particulate-associated polioviruses by the soft shell clam. J. Food Protect. 43:86–88.Google Scholar
  80. Mitchell, J. R., Presnell, M. W., Akin, E. W., Cummins, J. M., and Liu, O. C. 1966. Accumulation and elimination of poliovirus by the Eastern oyster. Am. J. Epidemiol. 84:40–50.PubMedGoogle Scholar
  81. Moore, C. A., and Gelder, S. R. 1983. The role of the “blunt” granules in the hemocytes of Mercenaria mercenaria following phagocytosis. J. Invert. Pathol. 41:369–377.CrossRefGoogle Scholar
  82. National Health and Medical Research Council. 1987. Code of hygenic practice for oysters and mussels for sale for human consumption. Australian Government Publishing Service, Canberra, Australia, 20 pp.Google Scholar
  83. Nielson, B. J., Haven, D. S., Perkins, F. O., Morales-Alamo, R., and Rhodes, M. W. 1978. Bacterial depuration by the American oyster (Crassostrea virginica) under controlled conditions. Vol. 2. Practical considerations and plant design. Special Scientific Report No. 88. Virginia Institute of Marine Science, Gloucester Point, Virginia, 48 pp.Google Scholar
  84. Okazaki, R. K., and Panietz, M. H. 1981. Depuration of twelve trace metals in tissues of the oysters Crassostrea gigas and C. virginica. Marine Biol. 63:113–120.CrossRefGoogle Scholar
  85. Power, U., and Collins, J. K. 1986. Evaluation of depuration as a means of rendering shellfish free from viral pathogens and bacterial indicators. Irish J. Food Sci. Technol. 10:159.Google Scholar
  86. Power, U. F., and Collins, J. K. 1989. Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis. Appl. Environ. Microbiol. 55:1386–1390.Google Scholar
  87. Presnell, M. W., Cummins, J. M., and Miescier, J. J. 1969. Influence of selected environmental factors on the elimination of bacteria by the Eastern oyster, Crassostrea virginica. In: Hammerstrom R. J., and Hill, W. F., Jr. (eds.) Proceedings of the Gulf and South Atlantic States Shellfish Sanitation Research Conference. Environmental Health Series, U.S. Public Health Service Publ. No. 999-UIH-9, pp. 47–65.Google Scholar
  88. Richards, G. P. 1985. Outbreaks of shellfish-associated enteric virus illness in the United States: requisite for development of viral guidelines. J. Food Protect. 48:815–823.Google Scholar
  89. Richards, G. P. 1987. Shellfish-associated enteric virus illness in the United States, 1934-1984. Estuaries 10:84–85.CrossRefGoogle Scholar
  90. Richards, G. P. 1988. Microbial purification of shellfish: a review of depuration and relaying. J. Food Protect. 51:218–251.Google Scholar
  91. Rodrick, G. E., Schneider, K. R., Steslow, F. A., and Blake, N.J. 1987. Uptake, fate and elimination by shellfish in a laboratory depuration system. Proc. Oceans 87 5:1752–1756.Google Scholar
  92. Romagosa Vila, J. A. 1957. Los rayos ultravioletas en el saneamiento de los moluscos. An. Bromatol. Tomo IX:401–404.Google Scholar
  93. Rowse, A. J., and Fleet, G. H. 1984. Effects of water temperature and salinity on elimination of Salmonella charity and Escherichia coli from Sydney rock oysters (Crassostrea commercialis). Appl. Environ. Microbiol. 48:1061–1063.PubMedGoogle Scholar
  94. Roy, D., Wong, P. K. Y., Engelbrecht, R. S., and Chian, E. S. K. 1981. Mechanism of enteroviral inactivation by ozone. Appl. Environ. Microbiol. 41:718–723.PubMedGoogle Scholar
  95. Scotti, P. D., Fletcher, G. C, Buisson, D. H., and Fredericksen, S. 1983. Virus depuration in the Pacific oyster (Crassostrea gigas) in New Zealand. N.Z. J. Sci. 26:9–13.Google Scholar
  96. Sobsey, M. D., Davis, AL., and Rullman, V. A. 1987. Persistence of hepatitis A virus and other viruses in depurated Eastern oysters. Proc. Oceans 87 5:1740–1745.Google Scholar
  97. Son, N. T., and Fleet, G. H. 1980. Behavior of pathogenic bacteria in the oyster, Crassostrea commercialis, during depuration, re-laying, and storage. Appl. Environ. Microbiol. 40:994–1002.PubMedGoogle Scholar
  98. Souness, R. A., and Fleet, G. H. 1979. Depuration of the Sydney rock oyster, Crassostrea commercialis. Food Technol. Aust. 31:397–404.Google Scholar
  99. Souness, R., Bowery, R. G., and Fleet, G. H. 1979. Commercial depuration of the Sydney rock oyster, Crassostrea commercialis. Food Technol. Aust. 31:531–537.Google Scholar
  100. Steslow, F. A., Schneider, K. R., Sierra, F. J., and Rodrick, G. E. 1987. Ultraviolet light depuration of Vibrio cholerae and Vibrio vulnificus from Florida oysters. Abstr. Annu. Meeting Am. Soc. Microbiol. p. 292.Google Scholar
  101. Timoney, J. F., and Abston, A. 1984. Accumulation and elimination of Escherichia coli and Salmonella typhimurium by hard clams in an in vitro system. Appl. Environ. Microbiol. 47:986–988.PubMedGoogle Scholar
  102. Tripp, M. R. 1960. Mechanisms of removal of injected microorganisms from the American oyster, Crassostrea virginica (Gmelin). Biol. Bull. 119:273–282.CrossRefGoogle Scholar
  103. Tripp, M. R. 1961. The fate of foreign materials experimentally introduced into the snail, Australorbis glabratus. J. Parasitol. 47:745–751.PubMedCrossRefGoogle Scholar
  104. Tripp, M. R. 1970. Defense mechanisms of molluscs. J. Reticuloendothel. Soc. 7:173–182.PubMedGoogle Scholar
  105. U.S. Public Health Service. 1986. National Shellfish Sanitation Program manual of operations. Part 1. Sanitation of shellfish growing areas. U.S. Public Health Service, Washington, DC.Google Scholar
  106. U.S. Public Health Service. 1987. National Shellfish Sanitation Program manual of operations. Part II. Sanitation of the harvesting, processing and distribution of shellfish. 1987 revision. U.S. Public Health Service, Washington, DC.Google Scholar
  107. Vasconcelos, G. J. 1969. The effect of turbidity on bacterial purification of Manila clams (Tapes japonica). Shellfish Sanitation Technical Report no. NWWHL-71-3, U.S. Public Health Service, Washington, DC, 8 pp.Google Scholar
  108. Vasconcelos, G. J., 1971. The effect of various flow rates on the elimination of bacteria by Manila clams. In: Hoff J. C, and Beck W. J. (eds.) 1967 Proceedings of the Northwest Shellfish Planning Conference, Environmental Protection Agency, Washington, DC. pp. 25–35.Google Scholar
  109. Vasconcelos, G. J., and Lee J. S. 1972. Microbial flora of Pacific oysters (Crassostrea gigas) subjected to ultraviolet-irradiated seawater. Appl. Microbiol. 23:11–16.PubMedGoogle Scholar
  110. Voille, H. 1929. De la stérilisation de l’eau de mer par ozone: applicationes de cette méthode pour le purification des coquillages contaminés. Rev. Hyg. Méd. Prévent. 51:42–46.Google Scholar
  111. Wells, W. F. 1916. Artificial purification of oysters. Publ. Hlth. Rep. 31:1848–1852.CrossRefGoogle Scholar
  112. Wells, W. F. 1928. Chlorination as a factor of safety in shellfish production. Am. J. Pub. Hlth. 19:72–77.Google Scholar
  113. West, P. A. 1986. Hazard analysis critical control point (HACCP) concept: application to bivalve shellfish purification systems. J. R. Soc. Hlth. 4:133–140.CrossRefGoogle Scholar
  114. West, P. A., Wood, P. C, and Jacob, M. 1985. Control of food poisoning risks associated with shellfish. J. R. Soc. Hlth. 1:15–21.CrossRefGoogle Scholar
  115. Wood, P. C. 1961. The principles of water sterilisation by ultra-violet light, and their application in the purification of oysters. Ministry of Agriculture, Fisheries and Food. Fish. Invest. Ser. II 23:1–47.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gary P. Richards

There are no affiliations available

Personalised recommendations