Abstract
Canola oil is used to identify oil obtained from low erucic acid, low glucosinolate rapeseed. Canola oil is Canada’s major vegetable oil. In 1988, canola accounted for 83% of the salad/cooking oil, and 42% and 57% of the vegetable oil used for margarine and shortenings, respectively, in Canada (Statistics Canada 1988). A total of 87 million kilograms of Canadian canola oil was exported (Statistics Canada 1988). To ensure continued and expanded product utilization, canola oil quality and stability are of utmost concern to both processors and users.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adman, R. G. 1983. Chemical composition of rapeseed oil, in High and Low Erucic Acid Rapeseed Oils—Production, Usage, Chemistry and Toxicological Evaluation, eds. J. K. G. Kramer; F. D. Saver; and W. J. Pagden. New York, Academic Press. 85–129.
Ahmad, M. M.; Al-Hakim, S.; and Shehata, A. A. Y. 1983. The behaviour of phenolic antioxidants, synergists, and their mixtures in two vegetable oils. Fette Seifen An-strichmittel 85: 479–483.
Anonymous. 1979. Composition of foods, fats and oils—raw, processed, prepared. USDA Agricultural Handbook No. 8–4. Washington, D. C.
AOCS 1979. Official and Tentative Methods, 3d ed. Champaign, Illinois: American Oil Chemists’ Society.
Biliek, G.; Guhr, G.; and Waibel, J. 1978. Quality assessment of used frying fats: a comparison of four methods. J. Amer. Oil Chem. Soc. 55: 728–733.
Blumenthal, M. M.; Trout, J. R.; and Chang, S. S. 1976. Correlation of gas chromatographic profiles and organoleptic scores of different fats and oils after simulated deep-fat frying. J. Amer. Oil Chem. Soc. 53: 496–501.
Bracco, U.; Dieffenbacher, A.; and Kolarovic, L. 1981. Frying performance of palm oil liquid fractions. J. Amer. Oil. Chem. Soc. 58: 6–12.
Canada Agricultural Products Standards Act. 1987. c. 27, s. 1, revised. Supply and Services Canada. Ottawa.
Chang, S. S.; Peterson, R. J.; and Ho, C-T. 1978. Chemical reactions involved in the deep-fat frying of foods. J. Amer. Oil Chem. Soc. 55: 718–727.
Chipault, J. R. 1962. Autoxidation and Antioxidants, vol 2, ed. W. O. Lundberg. New York: Interscience Publ. 477–542.
Cort, W. M. 1974. Antioxidant activity of tocopherols, ascorbyl palmitate, and ascorbic acid and their modes of action. J. Amer. Oil Chem. Soc. 51: 321–325.
deMan, J. M. 1980. Principles of Food Chemistry, 3d ed. Westport, Connecticut: Avi Publ.
Dobbs, J. E.; Vaisey-Genser, M.; and Diamant, R. 1978. Unpleasant odours of rapeseed oil heated to frying temperatures. Can. Inst. Food Sci. Technol. J. 11:66–70.
Dugan, L., Jr. 1976. Lipids, in Principles of Food Science. Part 1: Food Chemistry, ed. O. R. Fennema. New York: Marcel Dekker. 139–203.
Dupuy, H. P.; Rayner, E. T.; Wadsworth, J. I.; and Legendre, M. G. 1977. Analysis of vegetable oils for flavour quality by direct gas chromatography. J. Amer. Oil Chem. Soc. 54: 445–449.
Durance, S. 1986. The stability of canola oil blended with sunflower oil or cottonseed oil. M.Sc. thesis, University of Manitoba.
Dziezak, J. D. 1986. Antioxidants-the ultimate answer to oxidation. Food Technol. 40 (9): 94–102.
Eskin, N. A. M. 1989. Chemical and physical properties of canola oil products, in Canola O Properties and Performance, ed. D. F. G. Harris. Winnipeg, Manitoba: Canola Council of Canada. 16–32.
Eskin, N. A. M., and Frenkel, C. 1976. A simple and rapid method for assessing rancidity of oils based on the formation of hydroperoxides. J. Amer. Oil Chem. Soc. 53: 746–747.
Eskin, N. A. M., and Frenkel, C. 1977. A study of the deterioration of soybean and rapeseed oils by measurement of hydroperoxides. Section A. Autoxidation and thermooxidative alteration. Proc. of 13th World Congress Internat. Soc. Fat. Res. Al-9.
Eskin, N. A.M.; Malcolmson, L.; Durance-Todd, S.; Przybylski, R.; Carr, R. A.; and Mickle, J. 1989a. Stability of low linolenic acid canola oil to accelerated storage at 60°C. J. Amer. Oil Chem. Soc. 66: 454.
Eskin, N. A. M.; Vaisey-Genser, M.; Durance-Todd, S.; and Przybylski, R. 1989b. Stability of low linolenic acid canola oil to frying temperatures. J. Amer. Oil Chem. Soc. 66:1, 081–1, 084.
Evans, C. D.; List, G. R.; Moser, H. A.; and Cowan, J. C. 1973. Long-term storage of soybean and cottonseed salad oils. J. Amer. Oil Chem. Soc. 50: 218–222.
Evans, C. D.; Warner, K.; List, G. R.; and Cowan, J. C. 1972. Room odor evaluation of oils and cooking fats. J. Amer. Oil Chem. Soc. 49: 578–582.
Forss, D. A. 1972. Odor and flavor compounds from lipids. Prog. Chem. Fats and OtherLip-ids. 13: 181–251.
Frankel, E. N. 1983. Volatile lipid oxidation products. Prog. Lipid Res. 22: 1–33.
Frankel, E. N. 1985. Chemistry of autoxidation: mechanism, products, and flavor significance, in Flavor Chemistry of Fats and Oils, eds. D. B. Min and T. H. Smouse. Champaign, Illinois: American Oil Chemists’ Society. 1–37.
Frankel, E. N.; Neffe, W. E.; and Selke, E. 1981. Analysis of autoxidized fats by gas chromatography—mass spectrometry: VII. Volatile thermal decomposition products of pure hydroperoxides from autoxidized and photosensitized oxidized methyl oleate, linoleate, and linolenate. Lipids 16: 279–285.
Gordon, M. H. 1986. Effects of sterols on the oxidative deterioration of heated oils, in Interactions of Food Components, eds. G. G. Birch and M. G. Lindley. New York: Elsevier Applied Science Publ. 85–98.
Gray, J. I. 1978. Measurements of lipid oxidation: a review. J. Amer. Oil Chem. Soc. 55: 539–546.
Gray, J. I. 1985. Simple chemical and physical methods for measuring flavor quality of fats and oils, in Flavor Chemistry of Fats and Oils, eds. D. B. Min and T. H. Smouse. Champaign, Illinois: American Oil Chemists’ Society. 223–239.
Gunstone, F. D. 1984. Reaction of oxygen and unsaturated fatty acids. J. Amer. Oil Chem. Soc. 61: 441–447.
Gwo, Y. Y.; Flick, G. J., Jr.; Dupuy, H. P.; Ory, R. L.; and Baran, W. L. 1985. Effect of ascorbyl palmitate on the quality of frying fats for deep frying operations. J. Amer. Oil Chem. Soc. 62: 1,666–1,671.
Hawrysh, Z. J. 1989. Quality evaluations of antioxidant treated canola oils. Final report. Project No. 87–0166: Farming for the Future. Agriculture Research Council of Alberta. Edmonton, Alberta.
Hawrysh, Z. J.; Erin, M. K.; and Lin, Y. C. 1989a. The efficacy of a-tocopherol and ascorbyl palmitate on the Schaal storage stability of canola oil. Presented at 32d annual conference, Can. Inst. Food Sci. Technol., Jun. 4–7, 1989. Quebec City, Quebec.
Hawrysh, Z. J.; Erin, M. K.; and Lin, Y. C. 1989b. The efficacy of a-tocopherol and ascorbyl palmitate on the fluorescent light stability of canola oil. Unpublished data. Department of Foods and Nutrition, University of Alberta.
Hawrysh, Z. J.; Erin, M. K.; Lin, Y. C.; and Hardin, R. T. 1990a. The effects of propyl gallate and ascorbyl palmitate on the Schaal oven and fluorescent light stability of canola oil. Submitted to J. Food Sci.
Hawrysh, Z. J., and Y. C. Lin. 1989. The effects of propyl gallate and ascorbyl palmitate on the Schaal oven storage stability of canola oil. Unpublished data. Department of Foods and Nutrition, University of Alberta.
Hawrysh, Z. J.; McMullen, L. M.; Lin, Y. C.; Tokarska, B.; and Hardin, R. T. 1990b. Effects of tertiary butylhydroquinone oncanola oil thermal stability. Submitted to Can. Inst. Food Sci. Technol. J.
Hawrysh, Z. J.; Shand, P. J.; Lin, Y. C.; and Tokarska, B. 1987. Effects of tertiary butylhydroquinone on the storage stability of canola oil. Presented at 30th annual conference, Can. Inst. Food Sci. Technol., May 17–20, 1987. Hamilton, Ontario.
Hawrysh, Z. J.; Shand, P. J.; Tokarska, B.; and Lin,Y. C. 1988. Effects of tertiary butylhydroquinone on the stability of canola oil. I. Accelerated storage. Can. Inst. Food Sci. Technol. J. 21: 549–554.
Hawrysh, Z. J.; Shand, P. J.; Tokarska, B.; and Lin, Y. C. 1989c. Effects of tertiary butylhydroquinone on storage stability of canola oil. II. Practical Storage. Can. Inst. Food Sci. Technol. J. 22: 40–45.
Houlihan, C. M., and Ho, C-T. 1985. Natural antioxidants, in Flavor Chemistry of Fats and Oils, eds. D. B. Min and T. H. Smouse. Champaign, Illinois: American Oil Chemists’ Society. 117–143.
IUPAC 1987. Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th ed. Palo Alto, California: Blackwell Scientific Publ.
Jackson, H. W. 1981. Techniques for flavor and odor evaluationof soy oil. J. Amer. Oil Chem. Soc. 58: 227–231.
Jackson, H. W., and Giacherio, D. J. 1977 Volatiles and oil quality. J. Amer. Oil Chem. Soc. 54: 458–460.
Jacobson, G. A.; Kirkpatrick, J. A.; and Goff, H. E., Jr. 1964. A study of the applicability of a modified thiobarbituric acid test to flavor evaluation of fats and oils. J. Amer. Oil Chem. Soc. 41: 124–128.
Jarvi, P. K.; Lee, G. D.; Erickson, D. R.; and Butkus, E. A. 1971. Determination of the extent of rancidity of soybean oil by gas chromatography compared with peroxide value. J. Amer. Oil Chem. Soc. 48: 121–124.
Joyner, N. T., and McIntyre, J. E. 1938. The oven test as an index of keeping quality. Oil and Soap 15: 184–186.
Kiritsakis, A. K.; Stine, C. M.; and Dugan, L. R., Jr. 1983. Effect of selected antioxidants on the stability of virgin olive oil. J. Amer. Oil Chem. Soc. 60: 1,286–1,290.
Labuza, T. P. 1971. Kinetics of lipid oxidation in foods. CRC Crit. Rev. Food Technol. 2: 355–404.
Lin, Y. C.; Hawrysh, Z. J.; and McMullen, L. M. 1988. The efficacy of ascorbyl palmitate in enhancing the accelerated storage stability of canola oils. Unpublished data. Department of Foods and Nutrition, University of Alberta.
McKeag, R. G. 1977. Odorous compounds from heated rapeseed oil. Ph.D. thesis, University of Manitoba.
McMullen, L. M. 1988. The efficacy of ascorbyl palmitate in enhancing the storage and heat stability of canola oil. M.Sc. thesis, University of Alberta.
McMullen, L. M.; Hawrysh, Z. J.; Lin, C.; and Tokarska, B. 1990. The efficacy of ascorbyl palmitate in enhancing the accelerated storage stability of canola oil. J. Food Sci. In press.
Matsushita, S., and Terao, J. 1980. Singlet oxygen-initiated photoxidation of unsaturated fatty acid esters and inhibitory effects of tocopherols and β-carotene, in Autoxidation in Food and Biological Systems, eds. M. G. Simic and M. Karel. New York: Plenum Press. 27–44.
Mehlenbacher, V. C. 1960. The Analysis of Fats and Oils. Champaign, Illinois: Garrard Press.
Min, D. B. 1981. Correlation of sensory evaluation and instrumental gas chromatographic analysis of edible oils. J. Food Sci. 46:1,453–1,456.
Min, D. B., and Wen, J. 1983. Qualitative and quantitative effects of antioxidants on the flavor stability of oil. J. Food Sci. 48:1,172–1,174.
Moser, H. A.; Evans, C. D.; Cowan, J. C.; and Kwolek, W. F. 1965. A light test to measure stability of edible oils. J. Amer. Oil Chem. Soc. 42: 30–33.
Mounts, T. L. 1979. Odor considerations in the use of frying oils. J. Amer. Oil Chem. Soc. 56: 659–663.
Mounts, T. L., and Warner, K. 1980. Evaluation of finished oil quality, in Handbook of Soy Oil Processing and Utilization, eds. D. R. Erickson, E. H. Pryde, O. L. Brekke, T. L. Mounts, and R. A. Falb. St. Louis, and American Soybean Association, Champaign, Illinois: American Oil Chemists’ Society. 245–266.
Mounts, T. L.;Warner, K. A.; List, G. R.; Fredrich, J. P.; and Koritala, S. 1978. Flavor and oxidative stability of hydrogenated and unhydrogenated soybean oils: effects of antioxidants. J. Amer. Oil Chem. Soc. 55: 345–349.
Nawar, W. W. 1985. Chemistry of thermal oxidation. The Flavor Chemistry of Fats and Oils, eds. D. B. Min and T. H. Smouse. Champaign, Illinois: American Oil Chemists’ Society. 39–60.
Niewiadomski, H. 1970. Progress in the technology of rapeseed oil for edible purposes. Chem. Ind. 7: 883–888.
Patton, S. 1974. Malonaldehyde, lipid oxidation, and the thiobarbituric acid test. J. Amer. Oil Chem. Soc. 51: 114.
Patton, S.; Keeney, M.; and Kurtz, G. W. 1951. Compounds producing the Kreis color reaction with particular reference to oxidized mild fat. J. Amer. Oil Chem. Soc. 28: 391–393.
Paul, S., and Roylance, A. 1962. Keeping properties of edible oils: Part 1. The use of accelerated tests for assessment of the keeping properties of oils and the value of antioxidants. J. Amer. Oil Chem. Soc. 39: 163–165.
Perkins, E. G. 1967. Formation of nonvolatile decomposition products in heated fats and oils. Food Technol. 21: 611–616.
Pinkowski, P. L.; Witherly, K. B.; Harvey, C. D.; and Tadjalli, V. A. 1986. Sensory and gas chromatography techniques to evaluate the stability of oils (abstract). J. Am. Oil Chem. Soc. 63: 410.
Pongracz, G. 1973. Antioxidant mixtures for use in food. Internat. J. Vit. Nutr. Res. 43: 517–525.
Rossell, J. B. 1986. Classical analysis of oils and fats, in Analysis of Oils and Fats, eds. R. J. Hamilton and J. B. Rossell. New York: Elsevier Applied Science Publ. 1–90.
Roth, H., and Rock, S. P. 1972. The chemistry and technology of frying fat I. Chemistry. Bakers Digest 46 (4): 38–45.
Sattar, A.; deMan, J. M.; and Alexander, J. C. 1976a. Light-induced oxidation of edible oils and fats. Lebensm.-Wiss. U.-Technol. 9: 149–152.
Sattar, A.; deMan, J. M.; and Alexander, J. C. 1976b. Effect of wavelength on light-induced quality deterioration of edible oils and fats. Can. Inst. Food Sci. Technol. J. 9: 108–113.
Sattar, A.; deMan, J. M.; and Alexander, J. C. 1976c. Stability of edible oils and fats to fluorescent light irradiation. J. Amer. Oil Chem. Soc. 53: 473–477.
Scarth, R.; McVetty, P. B. E.; Rimmer, S. R.; and Stefansson, B. R. 1988. Stellar lowlinolenic-high-linoeic acid summer rape. Can. J. Plant Sci. 68: 509–511.
Scholz, R. G., and Ptak, L. R. 1966. A gas chromatographic method for measuring rancidity in vegetable oils. J. Amer. Oil Chem. Soc. 43: 596–599.
Scott, G. 1965. Atmospheric Oxidation and Antioxidants. New York: Elsevier Publ.
Sedlacek, B. A. J. 1975. The mechanism of the action of ascorbyl palmitate and other antioxidants of the autoxidation of fats. Nahrung 19: 219–229.
Selke, E., and Rohwedder, W. K. 1983. Volatile components from trilinolein heated in air. J. Amer. Oil Chem. Soc. 60:1, 853–1, 858.
Sheppard, A. J.; Iverson, J. L.; and Weihrauch, J. L. 1978. Composition of selected dietary fats, oils, margarines, and butter. Handbook of Lipids Research: Fatty Acids and Glycerides, ed. A. Kuksis. New York: Plenum Press. 341–379.
Sherwin, E. R. 1968. Methods for stability and antioxidants measurement. J. Amer. Oil Chem. Soc. 45: 632A - 649A.
Sherwin, E. R. 1972. Antioxidants for food fats and oils. J. Amer.Oil Chem. Soc. 49: 468–472.
Sherwin, E. R. 1976. Antioxidants for vegetable oils. J. Amer. Oil Chem. Soc. 53: 430–436.
Sherwin, E. R. 1978. Oxidation and antioxidants in fat and oil processing. J. Amer. Oil Chem. Soc. 55: 809–814.
Sherwin, E. R. 1985. Synthetic antioxidants for fats and oils, in Flavor Chemistry of Fats and Oils, eds. D. B. Min and T. H. Smouse. Champaign, Illinois: American Oil Chemists’ Society. 155–173.
Sherwin, E. R., and Thompson, J. W. 1967. Tertiary-butylhydroquinone-an antioxidant for fats and oils and fat-containing foods. Food Technol. 21: 912–916.
Sinnhuber, R. O., and Yu, T. C. 1958. 2-thiobarbituric acid method for the measurement of rancidity in fishery products. 2. The quantitative determination of malonaldehyde. Food Technol. 12:9–12.
Snyder, J. M.; Frankel, E. N.; and Selke, E. 1985. Capillary gas chromatographic analyses of headspace volatiles from vegetable oils. J. Amer. Oil Chem. Soc. 62 (12): 1675–1679.
St. Angelo, A. J.; Ory, R. L.; and Brown, L. E. 1975. Comparison of methods for determining peroxidation in processed whole peanut products. J. Amer. Oil Chem. Soc. 52: 34–35.
Statistics Canada. 1988. Oil and Fats. Catalog No. 32–006, vol 37, No. 12. Supply and Services Canada, Ottawa.
Stevenson, S. G.; Vaisey-Genser, M.; and Eskin, N. A. M. 1984. Quality control in the use of deep frying oils. J. Amer. Oil Chem. Soc. 61:1, 102–1, 108.
Stevenson, S. G.; Jeffrey, L.; Vaisey-Genser, M.; Fyfe, B.; Hougen, F. W.; and Eskin, N. A. M. 1984. Performance of canola and soybean fats in extended frying. Can. Inst. Food Sci. Technol. J. 17: 187–194.
Swem, D. 1964. Bailey’s Industrial Oil and Fat Products, 3d ed. New York: Interscience Publ.
Tarladgis, B. C.; Pearson, A. M.; and Dugan, L. E. 1962. The chemistry of the 2-thiobarbituric acid test for the determination of oxidative rancidity in foods. I. Some important side reactions. J. Amer. Oil Chem. Soc. 39: 34–39.
Thompson, J. W., and Sherwin, E. R. 1966. Investigation of antioxidants for polyunsaturated edible oils. J. Amer. Oil Chem. Soc. 43: 683–686.
Tokarska, B.; Hawrysh, Z. J.; and Clandinin, M. T. 1986. Study of the effect of antioxidants on storage stability of canola oil using gas liquid chromatography. Can. Inst. Food Sci. Technol. J. 19: 130–133.
Vaisey-Genser, M., and Ylimaki, G. 1985. Effects of a nonabsorbable antioxidant on canola oil stability to accelerated storage and to a frying temperature. Can. Inst. Food Sci. Technol. J. 18: 67–71.
Waltking, A. E., and Goetz, A. G. 1983. Instrumental determination of flavor stability of fatty foods and its correlation with sensory responses, in CRC CriticalReviews in Food Science and Nutrition, ed. T. E. Furia. Boca Raton, Florida: CRC Press. 99–132.
Warner, K. 1985. Sensory evaluation of flavor quality of oils, in Flavor Chemistry of Fats and Oils, eds. D.B. Min and T. H. Smouse. Champaign, Illinois: American Oil Chemists’ Society. 207–221.
Warner, K., and Frankel, E. N. 1985. Flavor stability of soybean oil based on induction periods for the formation of volatile compounds by gas chromatography. J. Amer. Oil Chem. Soc. 62: 100–103.
Warner, K.; Frankel, E. N.; and Mounts, T. L. 1989. Flavor and oxidative stability of soybean, sunflower, and low erucic acid rapeseed oils. J. Amer. Oil Chem. Soc. 66: 558–564.
Williams, J. L., and Applewhite,T. H. 1977. Correlation of the flavor scores of vegetable oils with volatile profile data. J. Amer. Oil Chem. Soc. 54: 461–463.
Yu, T. C., and Sinnhuber, R. O. 1964. Further observations on the 2-thiobarbituric acid method for measurement of oxidative rancidity. J. Amer. Oil Chem. Soc. 41: 540–543.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1990 Springer Science+Business Media New York
About this chapter
Cite this chapter
Hawrysh, Z.J. (1990). Stability of Canola Oil. In: Shahidi, F. (eds) Canola and Rapeseed. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3912-4_7
Download citation
DOI: https://doi.org/10.1007/978-1-4615-3912-4_7
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-6744-4
Online ISBN: 978-1-4615-3912-4
eBook Packages: Springer Book Archive