Removal of Glucosinolates and Other Antinutrients from Canola and Rapeseed by Methanol/Ammonia Processing

  • F. Shahidi
  • M. Naczk


Canola and rapeseed are oil-rich seeds, and their global production ranks third among other oilseed crops. After oil extraction, a meal containing about 40% protein is obtained. The quality of canola meal as represented by its amino acid composition is well balanced for human food use (Ohlson 1978). Through successful plant breeding, double-low varieties of rapeseed (canola) are now in production in Canada and some European countries. These varieties contain less than 2% erucic acid in their oil, and less than 30 µmol of any one or combinations of two or more of four aliphatic glucosinolates per gram of their moisture-free, defatted meal (see below).


Furfuryl Alcohol Rapeseed Meal Canola Meal Rapeseed Protein Myrosinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzalpurkar, A. B.; Mukherjee, K. D.; and Marigold, H. K. 1974. Detoxification of rapeseed meal, in Proceedings, 4th International Rapeseed Conference, Giessen, Germany. 609–614.Google Scholar
  2. Anderson, G. H.; Li, G. S. K.; Jones, J. D.; and Bendar, F. 1975. Effect of hydrogen peroxide treatment on the nutritional quality of rapeseed flour fed to weanling rats. J. Nutr. 105: 317–325.Google Scholar
  3. Appelqvist, L. A., and Josefsson, E. 1967. Method of quantitative determination of isothiocyanates and oxazolidimethiones in digests of seed meals of rape and turnip rape. J. Sci. Food Agric. 18: 510–519.CrossRefGoogle Scholar
  4. Armstrong, O. L. 1975. Effect of microwaving on oilseed proteins. M. S. thesis, Department of Food Science, Univ. of Guelph, Ontario.Google Scholar
  5. Astwood, E. B. 1943. Chemical nature of compounds which inhibit function of thyroid gland. J. Pharmacol. Exp. Ther. 78: 79–89.Google Scholar
  6. Astwood, E. B.; Greer, M. A.; and Ettlinger, M. G. 1949. L-5-vinyl-2-thiooxazolidone, an antithyroid compound from yellow turnip and from Brassica seeds. J. Biol. Chem. 181: 121–130.Google Scholar
  7. Ballester, D.; Rodrigo, R.; Nakouzi, J.; Chichester, C. O.; Yanez, E.; and Monkeberg, F. 1970. Rapeseed meal. III. A simple method for detoxification. J. Sci. Food Agric. 21: 143–144.CrossRefGoogle Scholar
  8. Ballester, D.; Rodriguez, B.; Rojas, M.; Brunser, O.; Reid, A.; Yanez, E.; and Monkeberg, F. 1973. Rapeseed meal. IV. Continuous water extraction and short-term feeding studies in rats with detoxified products. J. Sci. Food Agric. 24: 127–138.CrossRefGoogle Scholar
  9. Bell, J. M.; Shires, A.; Blake, J. A.; Campbell, S.; and McGregor, D. I. 1981. Effect of alkali treatment and amino acid supplementation on the nutritive value of yellow and oriental mustard meal for swine. Can. J. Anim. Sci. 61: 783–792.CrossRefGoogle Scholar
  10. Bell, J. M.; Youngs, C. G.; and Sallans, H. B. 1970. Treatment of rapeseed meal. Canadian Patent 839, 653.Google Scholar
  11. Belzile, R. J.; Bell, J. M.; and Wetter, L. R. 1963. Growth depressing factors in rapeseed oil meal. V. The effects of myrosinase activity on the toxicity of the meal. Can. J. Anim. Sci. 43: 169–173.CrossRefGoogle Scholar
  12. Bhatty, R. S.; Sosulski, F. W.; and Youngs, C. G. 1972. Extraction of glucosinolates from rapeseed. Can. Inst. Food Sci. Technol. J. 5: 149–154.Google Scholar
  13. Blake, J. A. 1983. The production of ammoniated canola meal, in 7th Progress Report, Research on Canola Meal, Oil and Seed, ed. E. E. McGregor. Winnipeg: Canola Council of Canada. 123–127.Google Scholar
  14. Clandinin, D. R.; Bayley, I.; and Cahllero, A. 1966. Effect of (-)-5-vinyl-2-oxazolidinethione, a goitrogen in rapeseed meal, on the rate of growth and thyroid function of chicks. Poult. Sci. 45: 833–838.CrossRefGoogle Scholar
  15. DeClercq, D. R., and Daun, J. K. 1989. Determination of total glucosinolate content in canola by reaction with thymol and sulfuric acid. J. Am. Oil Chem. Soc. 66: 788–791.CrossRefGoogle Scholar
  16. Eapen, K. E.; Tape, N. W.; and Sims, R. P. A. 1968. New process for the production of better quality rapeseed oil and meal. I. Effect of heat treatments on enzyme destruction and color of rapeseed oil. J. Am. Oil Chem. Soc. 45: 194–196.CrossRefGoogle Scholar
  17. Ettlinger, M. G., and Dateo, J. P., Jr. 1961. Simplified food logistics, in Studies of Mustard Oil Gucosinolates. Contract No. DA19–129QM–1059. Project No. 7–84–06–032. Final report: Dept. of Chemistry, Rice Institute, Houston, Texas. 1 – 96.Google Scholar
  18. Fenwick, G. R.; Heaney, R. K.; and Mullin, W. J. 1983. Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr. 18: 123–201.Google Scholar
  19. Fenwick, G. R.; Spinks, E. A.; Wilkinson, A. P.; Heaney, R. K.; and Legoy, M. A. 1986. Effect of processing on the antinutrient content of rapeseed. J. Sci. Food Agric. 37:735–741.CrossRefGoogle Scholar
  20. Goering, K. J. 1963. Obtaining nontoxic protein feed material from mustard seed, rapeseed, and similar seeds. US Patent 2, 987, 399.Google Scholar
  21. Goh, Y. K.; Robblee, A. R.; and Clandinin, D. R. 1987. Effect of ammoniation of canola meal on the fishy odour and trimethylamine content of eggs produced by brown-egg layers, in 8th ProgressReport, Research onCanola Seed, Oil, Meal and Meal Fractions. Winnipeg: Canola Council of Canada. 79–83.Google Scholar
  22. Goh, Y. K.; Shires, A.; Robblee, A. R.; and Clandinin, D. R. 1983. The effect of ammoniation on the nutritive value of canola meal for chickens, in 7th Progress Report, Research on Canola Meal, Oil and Seed, ed. E. E. McGregor. Winnipeg: Canola Council of Canada. 128–132.Google Scholar
  23. Jones, J. D., and Holme, J. 1979. Oilseed processing. US Patent 4, 158, 656.Google Scholar
  24. Keith, M. O., and Bell, J. M. 1983. Effect of ammoniation on the composition and nutritional quality of canola meal for swine, in 7th Progress Report, Research on Canola Meal, Oil and Seed, ed. E. E. McGregor. Winnipeg: Canola Council of Canada. 133–136.Google Scholar
  25. Kirk, W. D.; Mustakas, G. C.; and Griffin, E. L., Jr. 1966. Crambe seed processing: improved feed meal by ammoniation. J. Am. Oil Chem. Soc. 43: 550–555.CrossRefGoogle Scholar
  26. Kirk, L. D.; Mustakas, G. C.; Grifin, E. L., Jr.; and Booth, A. N. 1971. Crambe seed processing: decomposition of glucosinolates (thioglucosides) with chemical additives. J. Am. Oil Chem. Soc. 48: 845–850.CrossRefGoogle Scholar
  27. Kjaer, A. 1960. Naturally derived isothiocyanates (mustard oils) and their glucosides, in The Chemistry of Organic Natural Products, ed. L. Zechmeister. Berlin: Springer-Verlag. 122–175.Google Scholar
  28. Kozlowska, H.; Sabor, M. A.; Sosulski, F. W.; and Coxworth, E. 1975. Phenolic constituents of rapeseed flour. Can. Inst. Food Sci. Technol. J. 8: 160–163.Google Scholar
  29. MacFarlane, N.; Shah, E.; and MacFarlane, M. 1976. Aqueous fractionation of rapeseed. Tropical Sci. 18: 211–217.Google Scholar
  30. McGregor, D. I. 1983. Detoxification process for Brassica juncea seed. UK Patent Application 2, 113, 970.Google Scholar
  31. McGregor, D. I.; Mullin, W. J.; and Fenwick, G. R. 1983. Analytical methodology for determining glucosinolate composition and content. J. Assoc. Off. Anal. Chem. 66: 825–849.Google Scholar
  32. Maga, J. A. 1982. Phytate: its chemistry, occurrence, food interaction, nutritional significance, and methods of analysis. J. Food Chem. 30: 1–9.CrossRefGoogle Scholar
  33. Maheshwari, P. N.; Stanley, D. W.; and Gray, J. I. 1981. Detoxification of rapeseed proteins. J. Food Prot. 44: 459–470.Google Scholar
  34. Mukherjee, K. D.; Afzalpurkar, A. B.; and El-Nockrashy, A. S. 1976. Production of low glucosinolate rapeseed meals. Fette, Seife, Anstrichm. 78: 306–311.CrossRefGoogle Scholar
  35. Naczk, M.; Diosady, L. L.; and Rubin, L. J. 1986a. The phytate and complex phenol content of meals produced by alkanol-ammonia/hexane extraction of canola. Lebensm.-Wiss. u.Technol. 19: 13–16.Google Scholar
  36. Naczk, M.; Shahidi, F.; Diosady, L. L.; and Rubin, L. J. 1986b. Removal of glucosinolates from Midas rapeseed and mustard seed by methanol-ammonia. Can. Inst. Food Sci. Technol. J. 19: 75–77.Google Scholar
  37. Naczk, M., and Shahidi, F. 1989. The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chem. 31: 159–164.CrossRefGoogle Scholar
  38. Nishie, K., and Daxenbichler, M. E. 1980. Toxicology of glucosinolates, related compounds (nitriles, R-goitrin, isothiocyanates), and vitamin U found in Cruciferae. Food Cosmet. Toxicol. 18: 159–172.CrossRefGoogle Scholar
  39. Oginsky, E. L.; Stein, A. E.; and Greer, M. A. 1965. Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proc. Soc. Exptl. Biol. Med. 119: 360–364.Google Scholar
  40. Ohlson, R. 1978. Functional properties of rapeseed oil and protein products: a survey, in Proc. Fifth Int. Rapeseed Conf., vol. 2, Malmo, Sweden. 152–156.Google Scholar
  41. Reynolds, J. R., and Youngs, C. G. 1964. Effect of seed preparation on efficiency and oil quality in filtration extraction of rapeseed. J. Am. Oil Chem. Soc. 41: 63–65.CrossRefGoogle Scholar
  42. Rubin, L. J.; Diosady, L. L.; Naczk, M.; and Halfani, M. 1986. The alkanol-ammonia-water/ hexane treatment of canola. Can. Inst. Food Sci. Technol. J. 19: 547–561.Google Scholar
  43. Schlingmann, M., and Praere, P. 1978. Single-cell proteine nit reduziertem Nukleinsaureund Feltgehalt (Single-cell proteins with reduced content of nucleic acid and fat). Fette Seifen Anstrichm. 80: 283–286.CrossRefGoogle Scholar
  44. Schlingmann, M., and von Rymon-Lipinski, G. W. 1980. Process for treating meals and flours of oilseeds. UK Patent Application 2030, 441A.Google Scholar
  45. Schlingmann, M., and von Rymon-Lipinski 1982. Process for improving the properties of meals and flours of oily seeds. Canadian Patent 1120, 1979, March 30.Google Scholar
  46. Schlingmann, M., and Vorlesy, L. 1978. Verfahren zur Verminderung des Lipid-und Nukleinsaure Gehaltes in Mikrobiellen Zellmassen (Reducing the lipid and nucleic acid content in microbial cell masses). Fed. Rep. of Germany Patent 26, 33, 666.Google Scholar
  47. Schultz, O. E., and Gmelin, R. 1954. Mustard oil glucosides. VII. Quantitative determination of mustard oil glucosides with anthrone reagent. Z. Naturforsch. 9b: 27–29.Google Scholar
  48. Shahidi, F. 1990. Processing of Cruciferae oilseeds: benefits and drawbacks of alkanolammonia extraction, in Proceedings, 5th Inter. Congress of Engineering and Food. May 1989. Koln, Fed. Rep. of Germany. Amsterdam: Elsevier Publ. (in press).Google Scholar
  49. Shahidi, F., and Gabon, J. E. 1989. Effect of methanol-ammonia-water treatment on the concentration of individual glucosinolates of canola. J. Food Sci. 54: 1306–1309.CrossRefGoogle Scholar
  50. Shahidi, F., and Gabon, J. E. 1990. Degradation of isolated glucosinolates by methanol/ ammonia in model systems. Lebensn.-Wiss. u.Technol. 23: 154–157.Google Scholar
  51. Shahidi, F., and Naczk, M. 1989. Effect of processing on the content of condensed tannins in rapeseed meals: a research note. J. Food Sci. 54: 1082–1083.CrossRefGoogle Scholar
  52. Shahidi, F.; Gabon, J. E.; Rubin, L. J.; and Naczk, M. 1990. Effect of methanol-ammoniawater treatment on the fate of glucosinolates. J. Agric. Food Chem. 38: 251–255.CrossRefGoogle Scholar
  53. Shahidi, F.; Naczk, M.; Rubin, L. J.; and Diosady, L. L. 1988. A novel processing approach for rapeseed and mustard seed: removal of undesirable constituents by methanol-ammonia. J. Food Prot. 51: 743–749.Google Scholar
  54. Sims, R. P. A. 1971. Edible protein products from Cruciferae seed meals. J. Am. Oil Chem. Soc. 48: 733–736.CrossRefGoogle Scholar
  55. Slominski, B. A., and Campbell, L. D. 1987. Gas chromatographic determination of indole glucosinolates: a reexamination. J. Sci. Food Agric. 40: 131–143.CrossRefGoogle Scholar
  56. Sosulski, F. W.; Soliman, F. S.; and Bhatty, R. S. 1972. Diffusion extraction of glucosinolates from rapeseed. Can. Inst. Food Sci. Technol. J. 5: 101–104.Google Scholar
  57. Szewczuk, A.; Masztalerz, P.; and Nadwyczawski, W. 1970. New technique for improving rapeseed meal by acid hydrolysis. Zesz. Nauk. Wyzsz. Szk. Roln. Wroclawiu Roln. 27: 151–159.Google Scholar
  58. Szewczuk, A.; Masztalerz, P.; and Nadwyczawski, W. 1970. Chem. Abstract 74, 219–324.Google Scholar
  59. Tape, N. W.; Sabry, Z. I.; and Eapen, K. E. 1970. Production of rapeseed flour for human consumption. Can. Inst. Food Sci. Technol. J. 3: 78–81.Google Scholar
  60. Tookey, H. L.; Van Etten, C. H.; and Daxenbichler, M. E. 1980. Glucosinolates, in Toxic Constituents of Plant Foodstuffs, 2d ed., ed. I. E. Leiner. New York: Academic Press. 103–142.Google Scholar
  61. Vaccarino, C. 1975a. Detoxification of rapeseed flour. I. Hydrolysis of ground rapeseed prior to oil extraction. Rivista Italiana delle Sostanze Grasse 52 (3): 91–94 (Food Sci. Technol. Abstract 8, 11N505, 1976).Google Scholar
  62. Vaccarino, C. 1975b. Detoxification of rapeseed flour. II. Whole seedhydrolyzing treatment. Rivista Italiana delle Sostanze Grasse 52 (6): 195–197 (Food Sci. Technol. Abstract 8, 11N506, 1976).Google Scholar
  63. Vaccarino, C.; Toscano, M. A.; and Tripodo, M. M. 1976. Detoxification of rapeseed by hydrolyzing treatment on whole seed. III. Rivista Italiana delle Sostanze Grasse 52 (10): 291–294. (Food Sci. Technol. Abstract 9, 5N268, 1977).Google Scholar
  64. VanEtten, C. H., and Tookey, H. L. 1983. Glucosinolates, in CRC Handbook of Naturally Occurring Food Toxicants, ed. M. Rechcigl, Jr. Boca Raton: CRC Press. 15–30.Google Scholar
  65. VanMegen, W. H. 1983. Removal of glucosinolates from defatted rapeseed meal by extraction with aqueous ethanol. Can. Inst. Food Sci. Technol. J. 16: 93–96.Google Scholar
  66. Wetter, L. R., and Youngs, C. G. 1976. A thiourea-UV assay for total glucosinolate content in rapeseed meal. J. Am. Oil Chem. Soc. 53: 162–164.CrossRefGoogle Scholar
  67. Woyewoda, A. D.; Nakai, S.; and Watson, E. L. 1979. Detoxification of rapeseed protein products by an activated carbon treatment. Can. Inst. Food Sci. Technol. J. 11: 107–112.Google Scholar
  68. Youngs, C. G., and Perlin, A. S. 1967. Fe(II)-catalyzed decomposition of sinigrin and related thioglucosides. Can. J. Chem. 45: 1801–1804.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • F. Shahidi
  • M. Naczk

There are no affiliations available

Personalised recommendations