Phenolic Acids and Tannins in Rapeseed and Canola

  • H. Kozlowska
  • M. Naczk
  • F. Shahidi
  • R. Zadernowski


The utilization of rapeseed meal in human food formulations has been considered for many years. However, due to the presence of some antinutritional factors in the meal, this goal has not been achieved. Glucosinolates and hulls were first considered to be the most important limiting factors in the use of rapeseed meal in food formulations. In spite of the introduction of double-zero rapeseed varieties (canola) in many countries and the invention of a number of methods for dehulling (Sosulski and Zadernowski 1981; Greilsamer 1983; Diosady et al. 1986), the use of rapeseed meal as a source of food-grade protein is still limited by the presence by small amounts of glucosinolates as well as other undesirable components such as phytic acid and phenolic compounds. The content of phenolics in rapeseed flour is much higher than that found in flours obtained from other oleaginous seeds and accounts for about 30 times of the amount of phenolics in soybean flour (Table 11-1).


Phenolic Acid Condensed Tannin Sinapic Acid Nutritional Effect Rapeseed Meal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AOAC 1965. Official Methods of Analysis. 10th ed. Washington: Association of Official Analytical Chemists.Google Scholar
  2. Appelqvist, L. A. 1972. Chemical constituents of rapeseed, in Rapeseed, eds. L. A. Appelqvist and R. Ohlson. Amsterdam: Elsevier Publ. 168–180.Google Scholar
  3. Arai, S. H.; Suzuki, H.; Fujimaki, M.; and Sakwiai, Y. 1966. Flavor components in soybean II. Phenolic acids in defatted soybean flour. Agric. Biol. Chem. 30: 364–369.CrossRefGoogle Scholar
  4. Armstrong, W. D.; Featherston, W. R.; and Rogler, J. C. 1974. Effect of bird-resistant sorghum grain and various commercial tannins on chick performance. Poultry Sci. 53:2,137–2,142.CrossRefGoogle Scholar
  5. Artz, W. E.; Swanson, B. G.; Sendzicki, J.; Rasyid, A.; and Birch, R. E. W. 1986. Plant Proteins: Applications, Biological Effects and Chemistry, ACS Symposium Series 312, ed. R. L. Ory. Washington: American Chemical Society. 126–137.CrossRefGoogle Scholar
  6. Austin, F. L., and Wolff, I. A. 1968. Sinapine and related esters in seed meal of Crambe abyssinica. J. Agric. Food Chem. 16: 132–135.CrossRefGoogle Scholar
  7. Bate-Smith, E. C., and Ribereau-Gayon, P. 1959. Leucoanthocyanins in seeds. Qual. Plant. Mater. Vegetable 5: 189–198.CrossRefGoogle Scholar
  8. Bell, J. M., and Shires, A. 1982. Composition and digestibility by pigs of hull fractions from rapeseed cultivars with yellow or brown seed coats. Can. J. Animal Sci. 62: 557–565.CrossRefGoogle Scholar
  9. Blair, R., and Reichert, R. D. 1984. Carbohydrate and phenolic constituents in a comprehensive range of rapeseed and canola fractions: nutritional significance for animals. J. Sci. Food Agric. 35: 29–35.CrossRefGoogle Scholar
  10. Butler, E. J.; Pearson, A. W.; and Fenwick, G. R. 1982. Problems that limit the use of rapeseed meal as a protein source in poultry diets. J. Sci. Food Agric. 33: 866–875.CrossRefGoogle Scholar
  11. Byerrum, R. U., and Wing, R. E. 1953. The role of choline in some metabolic reactions of Nicotiana rustica. J. Biol. Chem. 205: 637–642.Google Scholar
  12. Calderon, P.; Van Buren, J.; and Robinson, W. B. 1968. Factors influencing the formation of precipitates and hazes by gelatin and condensed and hydrozable tannins. J. Agric. Food Chem. 16: 479–482.CrossRefGoogle Scholar
  13. Clandinin, D. R. 1961. Effect of sinapin, the bitter substance in rapeseed oil meal, on the growth of chickens. Poultry Sci. 40: 484–487.CrossRefGoogle Scholar
  14. Clandinin, D. R., and Heard, J. 1968. Tannins in prepress-solvent and solvent processed rapeseed meal. Poultry Sci. 47: 688–689.CrossRefGoogle Scholar
  15. Clandinin, D. R., and Robblee, A. R. 1981. Rapeseed meal in animal nutrition. II. Nonruminant animals. J. Am. Oil Chem. Soc. 58: 682–686.CrossRefGoogle Scholar
  16. Dabrowski, K., and Siemieniak, B. 1987. Removal of sinapine from rapeseed using various solvents and extractions conditions, in Proceedings, Seventh International Rapeseed Conference, vol. VI. Poznan, Poland. 1,476–1,481.Google Scholar
  17. Dabrowski, K., and Sosulski, F. 1983. Extraction of phenolic compounds from canola during protein concentration and isolation, in Proceedings, Sixth International Rapeseed Conference, vol. II. Paris. 1,338–1,342.Google Scholar
  18. Dabrowski, K., and Sosulski, F. 1984. Composition of free and hydrozylable phenolic acids in defatted flours of 10 oilseeds. J. Agric. Food Chem. 32: 128–130.CrossRefGoogle Scholar
  19. Desphande, S. S.; Cheryan, M.; and Salunkhe, D. K. 1986. Tannin analysis of food products. CRC Crit. Rev. Food Sci. Nutr. 24: 401–449.CrossRefGoogle Scholar
  20. Diosady, L. L.; Naczk, M.; and Rubin, L. J. 1985. The effect of ammonia concentration on the properties of the canola meals produced by ammonia-methanol/hexane system. Food Chem. 18: 121–130.CrossRefGoogle Scholar
  21. Diosady, L. L.; Tar, C. G.; Rubin, L. J.; and Naczk, M. 1987. Scale-up of the production of glucosinolate-free canola meal. Acta Alimentaria 16: 167–179.Google Scholar
  22. Durkee, A. B. 1971. The nature of tannins in rapeseed (Brassica campestris). Phytochemistry 10:1,583–1,585.CrossRefGoogle Scholar
  23. Durkee, A. B., and Harbome, J. B. 1973. Flavanol glycosides in Brassica and Sinapis. Phytochemistry. 12:1, 085–1, 089.CrossRefGoogle Scholar
  24. Durkee, A. B., and Thivierge, P. A. 1975. Bound phenolic acids in Brassica and Sinapis oilseeds. J. Food Sci. 40: 820–822.CrossRefGoogle Scholar
  25. Fenton, T. W.; Leung, J.; and Clandinin, D. R. 1980. Phenolic components of rapeseed meal. J. Food Sci. 45:1,702–1,705.CrossRefGoogle Scholar
  26. Fenwick, G. R.; Curl, C. L.; Butler, E. J.; Greenwood, N. M.; and Pearson, A. W. 1984a. Rapeseed meal and egg taint: effects of low glucosinolates Brassica napus meal, dehulled meal, and hulls, and of neomycin. J. Sci. Food Agric. 35: 749–761.CrossRefGoogle Scholar
  27. Fenwick, G. R.; Curl, C. L.; Pearson, A. W.; and Butler, E. J. 1984b. The treatment of rapeseed meal and its effect on the chemical composition and egg tainting potential. J. Sci. Food Agric. 35: 757–761.CrossRefGoogle Scholar
  28. Fenwick, G. R.; Hobson-Frohock, A.; Land, D. G.; and Curtis, R. F. 1979. Rapeseed meal and egg taint: treatment of rapeseed meal to reduce tainting potential. Br. Poultry Sci. 20: 323–329.CrossRefGoogle Scholar
  29. Fenwick, G. R., and Hoggan, S. A. 1976. The tannin content of rapeseed meals. Br. Poultry Sci. 17: 59–62.CrossRefGoogle Scholar
  30. Fenwick, G. R.; Pearson, A. W.; Greenwood, N. M.; and Butler, E. G. 1981. Rapeseed meal tannins and egg taint. Anim. Feed Sci. Technol. 6: 421–431.CrossRefGoogle Scholar
  31. Finot, P. A. 1983. Influence of processing on the nutritional value of proteins. Qual. Plant.-Plant Foods Hum. Nutr. 32: 439–453.CrossRefGoogle Scholar
  32. Foo, L. Y., and Porter, L. J. 1980. The phytochemistry of protocyanidin polymers. Phytochemistry 19:1,747–1,754.CrossRefGoogle Scholar
  33. Ford, J. E., and Hewitt, D. 1974. Protein quality in cereals and pulses. 2. Influence of polyethylene glycol on nutritional availability of methionine in sorghum (Sorghum vulgare pers), field beans (Vicia faba L.), and barley. Br. J. Nutr. 42: 317–323.CrossRefGoogle Scholar
  34. Gandhi, V. M.; Cheriyan, K. K.; Mulky, M. J.; and Menon, K. K. G. 1975. Utilization of nontraditional indigenous oilseed meal. 2. Studies with the detoxified salseed meal. J. Oil Technol. Assoc. India (Bombay) 7: 44.Google Scholar
  35. Goh, Y. K.; Shires, A. R.; Robblee, A. R.; and Clandinin, D. R. 1982. The effect of arnmoniation on the sinapine content of canola meal. Br. Poultry Sci. 23: 121–128.CrossRefGoogle Scholar
  36. Goldstein, J., and Swain, T. 1965. The inhibition of enzymes by tannins. Phytochemistry 4: 185–192.CrossRefGoogle Scholar
  37. Greilsamer, B. 1983. Depeliculage-Tirage des graines de colza (Dehulling and extraction of rapeseed), in Proceedings of Sixth International Rapeseed Conference, vol. 2, Paris. 1,496–1,501.Google Scholar
  38. Gustayson, K. H. 1954. Interaction of vegetable tannins with polyamides as proof of the dominant function of the peptide bond of collagen for its binding of tannins. J. Poly. Sci. 12: 317–324.CrossRefGoogle Scholar
  39. Gustayson, K. H. 1956. The chemistry of tanning process. New York: Academic Press.Google Scholar
  40. Hagerman, A. E., and Butler, L. G. 1980. Condensed tannin purification and characterization of tannin associated proteins. J. Agric. Food Chem. 28: 947–952.CrossRefGoogle Scholar
  41. Hagerman, A. E., and Butler, L. G. 1981. The specificity of proanthocyanidin-protein interaction. J. Biol. Chem. 256:4,494–4,497.Google Scholar
  42. Haslam, E. 1966. Chemistry of Vegetable Tannins. New York: Academic Press.Google Scholar
  43. Haslam, E. 1974. Polyphenol-protein interactions. Biochem. J. 139: 285–288.Google Scholar
  44. Haslam, E. 1979. Symmetry and promiscuity in procyanidin biochemistry. Phytochemistry 16:1,625–1,640.CrossRefGoogle Scholar
  45. Hobson-Frohock, A.; Land, D. G.; Griffiths, N. M.; and Curtis, R. F. 1973. Egg taints: association with trimethylamine. Nature 243: 303–305.CrossRefGoogle Scholar
  46. Kerber, E., and Buchloh, G. 1980. The sinapine content of crucifer seeds. Agnew. Bot. 54: 47–54.Google Scholar
  47. Kirk, L. D.; Mustakas, G. C.; and Griffin, E. L., Jr. 1966. Crambe seed processing improved feed meal by ammoniation. J. Am. Oil Chem. Soc. 43: 550–555.CrossRefGoogle Scholar
  48. Kozlowska, H.; Rotkiewicz, D. A.; Zademowski, R.; and Sosulski, F. W. 1983. Phenolic acids in rapeseed and mustard. J. Am. Oil Chem. Soc. 60:1,119–1,123.CrossRefGoogle Scholar
  49. Kozlowska, H.; Sabir, M. A.; Sosulski, F. W.; and Coxworth, E. 1975. Phenolic constituents of rapeseed flour. Can. Inst. Food Sci. Technol. J. 8: 160–163.Google Scholar
  50. Kozlowska, H., and Zademowski, B. 1988. Phenolic compounds of rapeseed as factors limiting the utilization of protein in nutrition. Presented at the Third Chemical Congress of North America. Toronto. June 5–10.Google Scholar
  51. Krygier, K.; Sosulski, F. W.; and Hogge, L. 1982. Free, esterified, and insoluble phenolic acids. 2. Composition of phenolic acids in rapeseed flour and hulls. J. Agric. Food Chem. 30: 334–336.CrossRefGoogle Scholar
  52. Kumar, R., and Singh, M. 1984. Tannins: their adverse role in ruminant nutrition. J. Agric. Food Chem. 32: 447–453.CrossRefGoogle Scholar
  53. Leung, J.; Fenton, T. W.; Mueller, M. M.; and Clandinin, D. R. 1979. Condensed tannins of rapeseed meal. J. Food Sci. 44:1,313–1,316.CrossRefGoogle Scholar
  54. Lo, M. T., and Hill, D. C. 1972. Composition of the aqueous extracts of rapeseed meals. J. Sci. Food Agric. 23: 823–830.CrossRefGoogle Scholar
  55. Loomis, W. D. 1974. Overcoming problems of phenolics of quinones in the isolation of plant enzymes and organelles. Methods Enzymol. 31: 528–544.CrossRefGoogle Scholar
  56. Loomis, W. D., and Battaile, J. 1966. Plant phenolic compounds and isolation of plant enzymes. Phytochemistry 5: 423–438.CrossRefGoogle Scholar
  57. McGregor, D. I.; Blake, J. A.; and M. D. Pickard. 1983. Detoxification of Brassica juncea with ammonia, in Proceedings of Sixth International Rapeseed Conference, vol. 2. Paris. 1,426–1,431.Google Scholar
  58. Maga, J. A., and Lorenz, K. 1973. Taste thresholds values for phenolic acids that can influence flavor properties of certain flours, grains, and oilseeds. Cereal Sci. Today 18: 326–329.Google Scholar
  59. Maga, J. A., and Lorenz, K. 1974. Gas-liquid chromatography separation of the free phenolic acid fractions in oilseed protein sources. J. Sci. Food Agric. 25: 797–802.CrossRefGoogle Scholar
  60. Makkar, H. P. S. 1989. Protein precipitation methods for quantification of tannins: a review. J. Agric. Food Chem. 37:1,197–1,202.CrossRefGoogle Scholar
  61. Martin-Tanguy, J.; Guillaume, J.; and Kossa, A. 1977. Condensed tannins in horse bean seeds: chemical structure and apparent effects on poultry. J. Sci. Food Agric. 28: 757–765.CrossRefGoogle Scholar
  62. Milic, B.; Stojanovic, S.; Vucurevic, N.; andTurcic, M. 1968. Chlorogenic and quinic acids in sunflower meal. J. Sci. Food Agric. 19: 108–113.CrossRefGoogle Scholar
  63. Mitaru, B. N.; Blair, R.; Bell, J. M.; and Reichert, R. D. 1982. Tannin and fiber contents of rapeseed and canola hulls. Can. J. Animal Sci. 62: 661–663.CrossRefGoogle Scholar
  64. Mole, S., and Waterman, P. G. 1987. Tannic acid and proteolytic enzymes: enzyme inhibition or substrate deprivation? Phytochemistry 26: 99–102.CrossRefGoogle Scholar
  65. Mueller, M. M.; Ryl, E.; Fenton, T. W.; and Clandinin, D. R. 1978. Cultivar and growing location differences on the sinapine content of rapeseed. Can. J. Animal Sci. 58: 579–583.CrossRefGoogle Scholar
  66. Naczk, M.; Diosady, L. L.; and Rubin, L. J. 1986. The phytate and complex phenol content of meals produced by alkanol-ammonia/hexane extraction of canola. Lebensm.-Wiss u. Technol. 19: 13–16.Google Scholar
  67. Naczk, M., and Shahidi, F. 1989. The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chem. 31: 159–164.CrossRefGoogle Scholar
  68. Neish, A. C. 1960. Biosynthetic pathways of aromatic compounds. Ann. Rev. Plant Physiol. 11: 55–80.CrossRefGoogle Scholar
  69. Oh, H. I.; Hoff, J. E.; Armstrong, G. S.; and Haff, L. A. 1980. Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem. 28: 394–398.CrossRefGoogle Scholar
  70. Pearson, A. W.; Butler, E. J.; and Fenwick, G. R. 1980. Rapeseed meal and egg taint: the role of sinapine. J. Sci. Food Agric. 31: 898–904.CrossRefGoogle Scholar
  71. Rackis, J. J.; Honig, D. H.; Sessa, D. J.; and Steggerda, F. R. 1970. Flavor and flatulence factors in soybean protein products. J. Agric. Food Chem. 18: 977–982.CrossRefGoogle Scholar
  72. Ribereau-Gayon, P. 1972. Plant Phenolics. Edinburgh: Oliver and Boyd.Google Scholar
  73. Roux, D. G.; Ferreira, D.; and Botha, J. J. 1980. Structural considerations in predicting the utilization of tannins. J. Agric. Food Chem. 28: 216–222.CrossRefGoogle Scholar
  74. Rutkowski, A.; Barylco-Pikielna, N.; Kozlowska, H.; Borowski, J.; and Zawadska, L. 1977. Evaluation of soybean protein isolates and concentrates as meat additives to provide a basis for increasing utilization of soybean. USDA-ARS Grant No. 13: final report. Olsztyn, Poland.Google Scholar
  75. Shahidi, F., and Naczk, M. 1988. Effect of processing on the phenolic constituents of canola. Bulletin deLiason. No. 14 du Gruope Polyphenols, Narbonne, France. Compte-rendu des Joumees Internationales d’Etude et de l’Assemblee Generale 1988. St. Catherines, Canada. Aug. 16–19. 89–92.Google Scholar
  76. Shahidi, F., and Naczk, M. 1989a. Effect of processing on the content of condensed tannins in rapeseed meals: a research note. J. Food Sci. 54:1,082–1,083.CrossRefGoogle Scholar
  77. Shahidi, F., and Naczk, M. 1989b. Solvent extraction of tannins from canola. Presented at the 50th annual meeting of the Institute of Food Technologists, Chicago. June 25–29.Google Scholar
  78. Smyk, B., and Drabent, R. 1989. Spectroscopic investigation of the equilibria of the ionic forms of sinapic acid. Analyst. 114: 723–726.Google Scholar
  79. Sosulski, F. W. 1979. Organoleptic and nutritional effects of phenolic: review. J. Am. Oil Chem. Soc. 56: 711–715.CrossRefGoogle Scholar
  80. Sosulski, F. W.; Humbert, E. S.; Lin, M. J. Y.; and Card, J. W. 1977. Rapeseed-supplemented wieners. Can. Inst. Food Sci. Technol. J. 10: 9–12.Google Scholar
  81. Sosulski, F. W., andZademowski, R. 1981. Fractionation of rapeseed meal into flour and hull component. J. Am. Oil Chem. Soc. 58: 96–98.CrossRefGoogle Scholar
  82. Swain, T. 1979. Tannins and lignins, in Herbivores: Their Interaction with Secondary Plant Metabolites, ed. G. A. J. Rosenthal and D. Janzen. New York: Academic Press.Google Scholar
  83. Tantawy, B.; Robin, J. P.; and Tollter, M. T. 1983. Proceedings of Sixth International Rapeseed Conference, vol. 2, Paris. 1,313–1,320.Google Scholar
  84. Tzagoloff, A. 1963. Metabolism of sinapine in mustard plants. I. The degradation of sinapine into sinapic acid and choline. Plant Physiol. 38: 202–206.CrossRefGoogle Scholar
  85. Van Buren, J. P., and Robinson, W. B. 1969. Formation of complexes between protein and tannic acid. J. Agric. Food Chem. 17: 772–777.CrossRefGoogle Scholar
  86. Wade, S.; Tomioka, S.; and Moriguchi, I. 1969. Protein binding, 6. Binding phenols to bovine serum albumin. Chem. Pharm. Bull. 17: 320–323.CrossRefGoogle Scholar
  87. Yapar, Z., and Clandinin, D. R. 1972. Effect of tannins in rapeseed meal on its nutritional value for chicks. Poultry Sci. 51: 222–228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. Kozlowska
  • M. Naczk
  • F. Shahidi
  • R. Zadernowski

There are no affiliations available

Personalised recommendations