Intramyocardial Pressure Revisited

  • Nicolaas Westerhof
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 121)

Abstract

It is reasoned that intramyocardial pressure (IMP) and ventricular pressure result from the varying stiffness of the cardiac muscle. This varying elastance concept, well known for the ventricular lumen, should also be applied to interstitial spaces. Since pressure depends on the momentary value of the time-varying elastance and the momentary volume (ventricular lumen and interstitial volume, respectively), ventricular and IMP ventricular pressure are not necessarily related. Therefore, IMP should not be viewed as the result of pressure in the ventricular lumen but as a direct result of cardiac muscle contraction.

Keywords

Catheter Epinephrine Cardiol Dial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krams R, Sipkema P, Westerhof N: Can coronary systolic-diastolic flow differences be predicted by left ventricular pressure or time-varying intramyocardial elastance? Basic Res Cardiol 1989;84:149–159.PubMedCrossRefGoogle Scholar
  2. 2.
    Krams R, Sipkema P, Westerhof N: Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 1989;257:H1471–H1479.PubMedGoogle Scholar
  3. 3.
    Suga H, Sagawa K, Shoukas AA: Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973;32:314–322.PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson JR, DiPalma JR: Intramyocardial pressure and its relation to aortic blood pressure. Am J Physiol 1939;125:234–243.Google Scholar
  5. 5.
    Nematzadeh D, Rose JC, Schryver TH, Huang HK, Kot PA: Analysis of methodology for measurement of intramyocardial pressure. Basic Res Cardiol 1984;79:86–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Westerhof N: Intramyocardial pressure. Basic Res Cardiol 1990;85:105–119PubMedCrossRefGoogle Scholar
  7. 7.
    Gregg DE, Eckstein RW: Measurements of intramyocardial pressure. Am J Physiol 1941;132:781–790.Google Scholar
  8. 8.
    Salisbury PF, Cross CE, Rieben PA: Intramyocardial pressure and strength of left ventricular contraction. Cire Res 1962;10:608–623.CrossRefGoogle Scholar
  9. 9.
    Baird RJ, Manktelow RT, Shah PA, Ameli FM: Intramyocardial pressure. The persistence of its transmural gradient in the empty heart and its relationship to myocardial oxygen consumption. J Thoracic and Cardiovasc Surg 1972;64:635–646.Google Scholar
  10. 10.
    Laszt L, Mueller A: Der Myokardiale Druck. Helv Physiol Acta 1958; 16:88–106.Google Scholar
  11. 11.
    Kreuzer H, Schoeppe W: Zur Entstehung der Differenz zwischen systolischem Myokard-und Ventrikeldruck. Pflügers Arch 1963;278:199–208.CrossRefGoogle Scholar
  12. 12.
    Armour JA, Randall WC: Canine left ventricular intramyocardial pressures. Am J Physiol 1971;220:1833–1839.PubMedGoogle Scholar
  13. 13.
    Rabbany SY, Kresch JY, Noordergraaf N: Intramyocardial pressure: interaction of myocardial fluid pressure and fibre stress. Am J Physiol 1989;257:H357–H364.PubMedGoogle Scholar
  14. 14.
    Heineman FW, Grayson J: Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 1985;249:H1216–H1223.PubMedGoogle Scholar
  15. 15.
    Brandi G, McGregor M: Intramural pressure in the left ventricle of the dog. Cardiovasc Res 1969;3:472–475.PubMedCrossRefGoogle Scholar
  16. 16.
    Kreuzer H, Schoeppe W: Das Verhalten des Druckes in der Herzwand. Pflügers Arch 1963;278:181–198.CrossRefGoogle Scholar
  17. 17.
    Kreuzer H, Schoeppe W: Der Myokarddruck bei vernederter Coronardurchblutung und bei Ischemie. Pflügers Arch 1963;278:209–220.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Nicolaas Westerhof

There are no affiliations available

Personalised recommendations