Skip to main content

Folate antimetabolites inhibitory to de novo purine synthesis

  • Chapter
New Drugs, Concepts and Results in Cancer Chemotherapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 58))

Abstract

The discovery of the activity of methotrexate (figure 1) for the treatment of human cancers in the early 1950s prompted the search for other folate analogs that were more active than methotrexate or, at least, that had different properties than this important folate antimetabolite. After 40 years of preclinical and clinical investigation, methotrexate is still in clinical use and still represents the only folate analog in widespread therapeutic application for the treatment of cancers. This is the case, in spite of the fact that thousands of folate analogs have been made and studied in the interim and that the potential of folate antimetabolites as therapeutic agents is established.Of course, the pharmaceutical promise for a new class of folate antimetabolites also continues to be high, given the central nature of the folate-dependent enzymes in processes required for any proliferative cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones TR, Calvert AH, Jackman AL, Brown SJ, Jones M, and Harrap KR. A potent antitumor quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties, and therapeutic results in mice. Eur J Cancer 17:11–19, 1981.

    PubMed  CAS  Google Scholar 

  2. Jackson RC, Jackman AL, and Calvert AH. Biochemical effects of a quinazoline inhibitor of thymidylate synthetase, (CB3717), on human lymphoblastoid cells. Biochem Pharmacol 32:3783–3790, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Moran RG, Keyomarsi K, and Patel R. Biochemical responses to treatment with fluoropyrimidines that limit tumor cell kill by these agents. In: The Expanding Role of Folates and Fluoropyrimidines in Cancer Chemotherapy, Y Rustum and JJ McGuire (eds). Plenum Press, New York, 1988, pp. 71–84.

    Google Scholar 

  4. Calvert AH, Alison DL, Harland SJ, Robinson BA, Jackman AL, Jones TR, Newell DR, Siddik ZH, Wiltshaw E, McElwain TJ, Smith IE, and Harrap KR. A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor, N10-propargyl-5,8-dideazafolic acid, CB3717. Clin Oncol 4:1245–1252, 1986.

    CAS  Google Scholar 

  5. Cantwell BMJ, Macaulay V, Harri AL, Kayl SB, Smith IE, Milsted RAV, and Calvert AH. Phase II study of the antifolate N10-propargyl-5,8-deazafolic acid (CB 3717) in advanced breast cancer. Eur J Cancer Clin Oncol 24:733–736, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Sessa C, Zucchetti M, Ginier M, Wiellems Y, DTncalci M, and Cavalli F. Phase I study of the antifolate N10-propargyl-5,8-dideazafolic acid (CB 3717). Eur J Cancer Clin Oncol 24:769–775, 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Patil SA, Shane B, Freisheim JH, Singh SS, and Hynes JB. Inhibition of mammalian folylpolyglutamate synthetase and human dihydrofolate reductase by 5,8-dideaza analogues of folic acid and aminopterin bearing a terminal L-ornithine. J Med Chem 32:1559–1565, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Cichowicz D, Cook J, George S, and Shane B. Hog liver folylpolyglutamate synthetase: substrate specificity and regulation. In: Proceeding of the Second Workshop on Folyl and Antifolyl Polyglutamates, ID Goldman (ed). Praeger Scientific, New York, 1985, pp. 7–13.

    Google Scholar 

  9. George S, Cichowicz DJ, and Shane B. Mammalian folylpoly-y-glutamate synthetase. 3. Specificity for folate analogues. Biochemistry 26:522–529, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Rosowsky A, Freisheim JH, Moran RG, Solan VR, Bader H, Wright JE, and RadikeSmith M. Methotrexate analogues. 26. Inhibition of dihydrofolate reductase and folylpolyglutamate synthetase and in vitro tumor cell growth by methotrexate and aminopterin analogues containing a basic amino acid side chain. J Med Chem 29:655–660, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. McGuire JJ, Hsieh P, Franco CT, and Piper J. Folylpolyglutamate synthetase inhibition and cytotoxic effects of methotrexate analogs containing 2,ω-diaminoalkanoic acids. Biochem Pharmacol 35:2607–2613, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Moran RG. Characterization of the function of mammalian folate polyglutamate synthetase. Adv Exper Med Biol 163:327–339, 1983.

    CAS  Google Scholar 

  13. Taylor EC, Harrington PJ, Fletcher SR, Beardsley GP, and Moran RG. Synthesis of the antileukemic agents 5,10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. J Med Chem 28:914–921, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Moran RG, Taylor EC, and Beardsley GP. 5,10-Dideaza-5,6,7,8-tetrahydrofolate, a potent antifolate inhibitory to de novo purine synthesis. Proc Am Assoc Cancer Res 26:231, 1985.

    Google Scholar 

  15. Goodman L, DeGraw JI, Kisliuk RL, Friedkin MM, Pastore EJ, Crawford EJ, Plante LT, Nahas A, Morningstar JR, Kwok G, Wilson L, Donovan E, and Ratzan J. Tetrahydrohomofolate, a specific inhibitor of thymidylate synthetase. J Am Chem Soc 86:808–809, 1964.

    Google Scholar 

  16. Friedkin M, Crawford EJ, and Plante LT. Empirical vs. rational approaches in cancer chemotherapy. Ann NY Acad Sci 186:209–213, 1971.

    Article  PubMed  CAS  Google Scholar 

  17. Hakala MT, Zakrzewski SF, and Nichol CA. Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J Biol Chem 236:952–958, 1961.

    PubMed  CAS  Google Scholar 

  18. Kaufman RJ, Brown PC, and Schimke RT. Amplified dihydrofolate reductase genes in unstably methotrexate resistant cells are associated with double minute chromosomes. Proc Natl Acad Sci USA 76:5669–5673, 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Biedler JL, Melera PW, and Spengler BA. Specifically altered metaphase chromosomes in antifolate-resistant Chinese hamster cells that overproduce dihydrofolate reductase Cane Genet Cytogenet 2:47–60, 1980.

    Article  Google Scholar 

  20. Alt FW, Kellems RE, Bertino JR, and Schimke RT. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253:1357–1370, 1978.

    PubMed  CAS  Google Scholar 

  21. Mead JAR, Goldin A. Kisliuk RL, Friedkin M, Plante L, Crawford EJ, and Kwok G. Pharmacological aspects of homofolate derivates in relation to amethopterin-resistant murine leukemia. Cancer Res 26:2374–2379, 1966.

    PubMed  CAS  Google Scholar 

  22. Mishra LC and Mead JAR. Further evaluation of the antitumor activity of homofolate and its reduced derivatives against methotrexate-insensitive tumors. Chemotherapy 17:283–292, 1972.

    Article  PubMed  CAS  Google Scholar 

  23. Nichol CA and Hakala MT. Comparative growth-inhibitory activity of homofolic acid against cell lines sensitive and resistant to amethopterin. Biochem Pharmacol 15:1621–1623, 1966.

    Article  CAS  Google Scholar 

  24. Diddens H, Niethammer D, and Jackson RC. Patterns of cross-resistance to the antifolate drugs trimetrexate, metoprine, homofolate, and CB 3717 in human lymphoma and osteosarcoma cells resistant to methotrexate. Cancer Res 43:5286–5292, 1983.

    PubMed  CAS  Google Scholar 

  25. Livingston D, Crawford EJ, and Friedkin M. Studies with tetrahydrohomofolate and thymidylate synthetase in amethopterin-resistant mouse leukemia cells. Biochemistry 7: 2814–2818, 1968.

    Article  PubMed  CAS  Google Scholar 

  26. Thorndike J, Kisliuk RL, Gaumont Y, Piper JR, and Nair MG. Tetrahydrohomofolate polyglutamates as inhibitors of thymidylate synthase and glycinamide ribonucleotide formyltransferase in Lactobacillius casei. Arch Biochem Biophys 277:344–341, 1990.

    Article  Google Scholar 

  27. Thorndike J, Gaumont Y, Kisliuk RL, Sirotnak FM, Murthy BR, Nair MG, and Piper JR. Inhibition of glycinamide ribonucleotide formyltransferase and other folate enzymes by homofolate polyglutamates in human lymphoma and murine leukemia cell extracts. Cancer Res 49:158–163, 1989.

    PubMed  CAS  Google Scholar 

  28. Maley GF, Bellisario RL, Guarino DV, and Maley F. The primary sequence of Lactobacillus casei thymidylate synthetase. III The use of 2-(2-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine and limited tryptic peptides to establish the complete amino acid sequence of the enzyme. J Biol Cem 254:1301–1304, 1979.

    CAS  Google Scholar 

  29. Perryman SM, Rossana C, Deng T, Vanin EF, and Johnson LF. Sequence of a complementary DNA for mouse thymidylate synthase reveals striking similarity with the prokaryotic enzymes. Mol Biol Evol 3:313–321, 1986.

    PubMed  CAS  Google Scholar 

  30. Hakala MT. Homofolate and tetrahydrohomofolate, inhibitors of purine synthesis. Cancer Res 31:813–816, 1971.

    PubMed  CAS  Google Scholar 

  31. Divekar AY and Hakala MT. Inhibition of the biosynthesis of 5’-phosphoribosyl-N-formylglycinamide in sarcoma 180 cells by homofolate. Mol Pharmacol 11:319–325, 1975.

    PubMed  CAS  Google Scholar 

  32. Moran RG, Rosowsky A, and Forsch R. A new folate antimetabolite specifically inhibitory to de novo purine synthesis. Proc Am Assoc Cancer Res 25:311, 1984.

    Google Scholar 

  33. Bertrand R. and Jolivet J. Methenyltetrahydrofolate synthetase prevents the inhibition of aminoimidazole carboxamide ribonucleotide transformylase by 5-formyltetrahydrofolate polygutamates. J Biol Chem 264, 8843–8846.

    Google Scholar 

  34. Slieker LJ and Benkovic SJ. Inhibition of HKSV28 cell growth by 5, 11-methenyltetrahydr-ohomofolate. Mol Pharmacol 25:294–302, 1984.

    PubMed  CAS  Google Scholar 

  35. Caperelli CA, Domanico P, and Benkovic SJ. Synthesis of 5, 11-methenyltetrahydrohomofolate and its antifolate activity in vitro. J Med Chem 24:1086–1088, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Forsch RA and Rosowsky A. A new one-step synthesis of leucovorin from folic acid and of 5-formyl-5,6,7,8-tetrahydrohomofolate acid from homofolic acid using dimethylamineborane in formic acid. J Org Chem 50:2582–2583, 1985.

    Article  CAS  Google Scholar 

  37. Forsch RA and Rosowsky A. A new one-step synthesis of leucovorin from folic acid and of 5-formyl-5,6,7,8-tetrahydrohomofolate acid from homofolic acid using dimethylamineborane in formic acid. (Correction) J Org Chem 51:4326, 1986.

    Article  Google Scholar 

  38. Cichowicz DJ and Shane B. Mammalian folylpoly-γ-glutamate synthetase. 2. Substrate specificity and kinetic properties. Biochemistry 26:513–521, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Moran RG and Colman PD. Mammalian folylpolyglutamate synthetase: partial purification and properties of the mouse liver enzyme. Biochemistry 23:4580–4589, 1984.

    Article  PubMed  CAS  Google Scholar 

  40. DeGraw JI, Colwell WT, Brown VH, Sato M, Kisliuk RL, Gaumont Y, Thorndike J, and Sirotnak FM. Synthesis and biological evaluation of 8-deazahomofolic acid and its tetrahydro derivative. J Med Chem 31:150–153, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Taylor RT and Hanna ML. 5-Methyltetrahydrohomofolate: a substrate for cobalamin methyltransferases and an inhibitor of cell growth. Arch Biochem Biophys 163:122–132, 1974.

    Article  PubMed  CAS  Google Scholar 

  42. Cohen GI, Parker LM, Rosowsky A, Ervin TJ, Modest EJ, and Frei E III. 5-Methyltetrahydrohomofolate (MTHTF): phase 1 trial and pharmacology in man. Proc Am Soc Clin Oncol 1:14, 1982.

    Google Scholar 

  43. Moran RG, Colman PD, Rosowsky A, Forsch R, and Chan KK. Structural features of 4-aminofolates requisite for substrate activity with mammalian folylpolyglutamate synthetase. Mol Pharmacol 27:156–166, 1985.

    PubMed  CAS  Google Scholar 

  44. Beardsley GP, Taylor EC, Moroson BA, and Moran RG. 5,10-Dideaza-5,6,7,8-tetrahydrofolate, an exceptionally potent inhibitor of de novo purine synthesis. J Biol Chem 264:328–333, 1989.

    PubMed  CAS  Google Scholar 

  45. Moran RG, Baldwin SW, Taylor EC, and Shih C. The 6-S and 6-R diastereomers of 5,10-dideaza -5,6,7,8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. J Biol Chem 264:21047–21051, 1989.

    PubMed  CAS  Google Scholar 

  46. Moran RG, Colman PD, and Jones TR. The relative substrate activities of structurally related pteridine, quinazoline, and pyrimidine analogs for mouse liver folylpolyglutamate synthetase. Mol Pharmacol 36:736–743, 1989.

    PubMed  CAS  Google Scholar 

  47. Cichowicz DJ, Hynes JB, and Shane B. Substrate specificity of mammalian folylpoly-y-glutamate synthetase for 5,8-dideazafolates and 5,8-dideaza analogues of aminopterin. Biochem Biophys Acta 957:363–369, 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Taylor EC, Hamby JM, Shih C, Grindey GB, Rinzel SM, Beardsley GP, and Moran RG. Synthesis and antitumor activity of 5-deaza-5,6,7,8-tetrahydrofolic acid (5-DATHF) and N10-substituted analogues. J Med Chem. 32:1517–1522, 1989.

    Article  PubMed  CAS  Google Scholar 

  49. Jackman AL, Taylor GA, O’Conner BM, Bishop JA, Moran RG, and Calvert AH. Activity of the thymidylate synthase inhibitor, 2-desamino-N10-propargyl-5,8-dideazafolic acid and related compounds in murine (L1210) and human (W1L2) systems in vitro and in vivo. Cancer Res 50:5212–5218, 1990.

    PubMed  CAS  Google Scholar 

  50. Henderson JF. Feedback inhibition of purine biosynthesis in ascites tumor cells. J Biol Chem 237:2631–2635, 1962.

    PubMed  CAS  Google Scholar 

  51. DeGraw JI, Christie PH, Kisliuk RL, Gaumont Y, and Sirotnak FM. Synthesis and antifolate properties of 10-alkyl-5,10-dideaza analogues of methotrexate and tetrahydrofolic acid. J Med Chem 33:673–677, 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Barnett C and Wilson TM. Asymmetric synthesis and absolute configuration of 5,10-dideaza -5,6,7,8-tetrahydropteroic acid and 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF). In: Chemistry and Biology of Pteridines, 1989. Pteridine and Folic Acid Derivatives, H Ch Curtis, S Ghisla, and N Blau (eds). De Gruyter Publishing, New York, 1990, pp. 102–105.

    Google Scholar 

  53. Dev IK and Harvey RJ. NIO-formyltetrahydrofolate is the formyl donor for gylcinamide ribonucleotide transformylase in Escherichia cali. J Biol Chem 253:4242–4244, 1978.

    PubMed  CAS  Google Scholar 

  54. Smith GK, Benkovic PA, and Benkovic SJ. L(-)-10-formyltetrahydrofolate is the cofactor for glycinamide ribonucleotide transformylase from chicken liver. Biochemistry 20:4034–4036, 1981.

    Article  PubMed  CAS  Google Scholar 

  55. McGuire JJ, Hsieh P, Coward JJ, and Bertino JR. Enzymatic synthesis of folylpolyglutamates: characterization of the reaction and its products. J Biol Chem 255: 5776–5788, 1980.

    PubMed  CAS  Google Scholar 

  56. Sato JK and Moran RG. Interaction of methotrexate and citrovorum factor with folylpolyglutamate synthetase. Proc Am Assoc Cancer Res 25:312, 1984.

    Google Scholar 

  57. Boschelli DH, Webber S, Whitely JM, Oronsky AL, and Kerwar SS. Synthesis and biological properties of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid. Arch Biochem Biophys 265:43–49, 1988.

    Article  PubMed  CAS  Google Scholar 

  58. Sirotnak FM, Otter G, Piper JR, and DeGraw JI. Analogs of tetrahydrofolate directed at folate-dependent purine biosynthetic enzymes. Characteristics of mediated entry and transport-related resistance in L1210 cells for 5,10-dideazatetrahydrofolate and two alkyl derivatives. Biochem Pharmacol 37:4775–4777, 1990.

    Article  Google Scholar 

  59. Beardsley GP, Taylor EC, Shih C, Poore GA, Grindey GB, and Moran RG. A new class of antifolates, 5,10-dideazatetrahydrofolic acid, an inhibitor of GAR transformylase with broad in vivo activity. Proc Am Assoc Cancer Res 27:259, 1986.

    Google Scholar 

  60. Pizzorno G, Russello O, Cashmore AR, Moroson BA, Cross AD, Coronnello M, and Beardsley GP. Polyglutamation: an essential step in the activation of 5,10-dideazatetrahydrofolic acid. Proc Am Assoc Cancer Res 31:339, 1990.

    Google Scholar 

  61. Fry DW, Anderson LA, Borst M, and Goldman ID. Analysis of the role of methotrexate in gut and the Ehrlich tumor in vivo as factors in drug sensitivity and selectivity. Cancer Res 43:1087–1092, 1983.

    PubMed  CAS  Google Scholar 

  62. Galivan J. Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol Pharmacol 17:105–110, 1980.

    PubMed  CAS  Google Scholar 

  63. Sikora E, Jackman AL, Newell DR, and Calver AH. Formation, retention, and biological activity of N10 propargyl-5,8-deazafolic acid (CB 3717) polyglutamates in L1210 cells in vitro. Biochem Pharmacol 37:4047–4054, 1988.

    Article  PubMed  CAS  Google Scholar 

  64. Pizzorno G, Cashmore AR, Moroson BA, and Beardsley GP. Leucovorin (LV): a ’rescue’ agent for 5,10-dideazatetrahydrofolic acid (DDATHF). Proc Am Assoc Cancer Res 31:339, 1990.

    Google Scholar 

  65. Pizzorno G, Cashmore AR, Moroson BA, Cross AR, Shih C, and Beardsley GP. Enhanced target enzyme levels, impaired polyglutamation, and enhanced pools of natural folates are associated with resistance to deazatetrahydrofolates in CCRF-CEM cells. Proc Am Assoc Cancer Res 30:480, 1989.

    Google Scholar 

  66. Galivan J, Nimec Z, Boschelli D, Oronsky AL, and Kerwar SS. Antifolate drug interactions: enhancement of growth inhibition due to the antipurine 5,10-dideazatetrahydrofolic acid by the lipophilic dihydrofolate reductase inhibitors metoprine and trimetrexate. Cancer Res 48:2421–2425, 1988.

    PubMed  CAS  Google Scholar 

  67. Baldwin SW, Tse A, Taylor EC, Rosowsky A, Shih C, and Moran RG. Structural features of 5,10-dideaza-5,6,7,8-tetrahydrofolate that determine inhibition of mammalian glycinamide ribonucleotide formyltransferase. Biochemistry 30:1997–2006, 1991.

    Article  PubMed  CAS  Google Scholar 

  68. Jackson RC, Hart LI, and Harrap KR. Intrinsic resistance to methotrexate of cultured mammalian cells in relation to the inhibition kinetics of their dihydrofolate reductases. Cancer Res 36:1991–1997, 1976.

    PubMed  CAS  Google Scholar 

  69. Strauss OH and Goldstein A. Zone behavior of enzymes. J Gen Physiol 26:559–585, 1943.

    Article  Google Scholar 

  70. Werkheiser WC. Specific binding of 4-aminofolic acid analogues by folic acid reductase. J Biol Chem 236:888–893, 1961.

    CAS  Google Scholar 

  71. Rosowsky A, Forsch RA, and Moran RG. 5,8,10-Trideaza-5,6,7,8-tetrahydropteroyl-L-glutamate and -L-ornithine as potential antifolates and antitumor agents. J Med Chem 32:709–715, 1989.

    Article  PubMed  CAS  Google Scholar 

  72. Moran RG, Colman PD, Taylor EC, and Shih C. Polyglutamation determines the antitumor activity of deazatetrahydrofolate inhibitors of purine synthesis. Cancer Res, submitted, 1991.

    Google Scholar 

  73. Shih C, Grindey GB, Moran RG, and Taylor EC. Molecular modelling studies on deazatetrahydrofolates. In: Chemistry and Biology of Pteridines, 1989. Pteridine and Folic Acid Derivatives, H Ch Curtis, S Ghisla, and N Blau (eds). De Gruyter Publishing, New York, 1990, pp. 995–1000.

    Google Scholar 

  74. Kelly JL, McLean EW, Cohn NK, Edelstein MP, Duch DS, Smith GK, Hanlon MH, and Ferone R. Synthesis and biological activity of an acyclic analogue of 5,6,7,8-tetrahydrofolic acid, N-[4-[[3-(2,4-diamino-l,6-dihydro-6-oxo-5-pyrimidinyl)propyl]amino]-benzoyl]-L-glutamic acid. J Med Chem 33:561–567, 1990.

    Article  Google Scholar 

  75. Moran RG, Shih C, Taylor EC, and Rosowsky A. Acylic folates analogs retain activity as substrates for mouse liver folylpolyglutamate synthetase (FPGS). Proc Am Assoc Cancer Res. 30:478, 1989.

    Google Scholar 

  76. Shih C, Grindey GB, Houghton PJ, and Houghton J. In vivo antitumor activity of 5,10-dideazatetrahydrofolic acid (DDATHF) and its diastereomeric isomers. Proc Am Assoc Cancer Res 29:283, 1988.

    Google Scholar 

  77. Beardsley GP, Taylor EC, Grindey GB, and Moran RG. Deaza derivatives of tetrahydrofolic acid. A new class of folte antimetabolites. In: Chemistry and Biology of the Pteridines, 1986. BA Cooper and VM Whitehead (eds). De Gruyter and Co., New York, 1986, pp. 953–957.

    Google Scholar 

  78. Taylor EC. New pathways from pteridines. Design and synthesis of a new class of potent and selective antitumor agents. J Heter Chem 27:1–12, 1990.

    Article  CAS  Google Scholar 

  79. Muggia F, Martin T, Ray M, Leichman CG, Grunberg S, Gill I, Moran R, Dyke R, and Grindey G. Phase 1 clinical trial of weekly 5,10-dideazatetrahydrofolate (LY 26418, DDATHF-B) Proc Am Assoc Clin Oncol 9:74, 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers, Boston.

About this chapter

Cite this chapter

Moran, R.G. (1992). Folate antimetabolites inhibitory to de novo purine synthesis. In: Muggia, F.M. (eds) New Drugs, Concepts and Results in Cancer Chemotherapy. Cancer Treatment and Research, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3876-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3876-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-1253-6

  • Online ISBN: 978-1-4615-3876-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics