Advertisement

Absence of Prostaglandin E2-Induced Radioprotection in Two Cell Lines Lacking Specific PGE2-Binding Sites

  • T. L. WaldenJr.
  • N. K. Farzaneh
  • J. M. Speicher
  • T. A. Fitz
Chapter
Part of the Developments in Oncology book series (DION, volume 67)

Abstract

Prostaglandin E2 (PGE2) is an effective radioprotective agent in vivo but is not consistently radioprotective in vitro. The present study examines the possibility that PGE2-induced radioprotection is receptor mediated, and therefore, that cell lines lacking PGE2 receptors will not be protected. Two cell lines were examined: the DC3 transformed rat granulosa cell line which responds to PGE2 and the HSDM1C1 mouse fibrosarcoma cell line which produces PGE2.

Keywords

Luteal Cell PGE2 Receptor PGE2 Treatment Radiation Survival Chinese Hamster Lung Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    T.L. Walden, Jr., E.V. Holahan, and G.N. Catravas. Development of a model system to study leukotriene-induced modification of radiosensitivity in mammalian cells. Prog Lipid Research 1986, 25:587-590.CrossRefGoogle Scholar
  2. 2.
    T.L. Walden, Jr., M.L. Patchen, and T.J MacVittie. Leukotriene-induced radioprotection of hematopoietic stem cells in mice. Radiat Res 1988; 113: 388-395.PubMedCrossRefGoogle Scholar
  3. 3.
    W.R. Hanson, K.A Houseman, A.K. Nelson, and P.W. Collins. Radiation protection of the murine intestine by misoprostol, a prostaglandin E1 analogue, given alone or with WR-2721, is stereospecific. Prostaglandins Leukotrienes and Essential Fatty Acids 1988; 32:101-105.Google Scholar
  4. 4.
    T.L. Walden, Jr., and J.F. Kalinich. Radioprotection by leukotrienes: Is there a receptor mechanism? Pharmacol Ther 1988; 39:379-384.PubMedCrossRefGoogle Scholar
  5. 5.
    Allalunis-Turner, M.J., T.L. Walden, and C. Sawich. Induction of marrow hypoxia by radioprotective agents. Radiat Res 1989; 118:581-586.PubMedCrossRefGoogle Scholar
  6. 6.
    T.A. Fitz, D.F. Contois, Y.X. Liu, D.S. Watt, and T.L. Walden, Jr. Interaction of leukotriene C4 and Chinese hamster lung fibroblasts (V79A03 cells). 1. Characterization of binding. Prostaglandins 1990; 40:417-429.PubMedCrossRefGoogle Scholar
  7. 7.
    Y.X. Liu, D.F. Contois, D.S. Watts, T.L. Walden, Jr., and T.A. Fitz. Interaction of leukotriene C4 and Chinese hamster lung fibroblasts (V79A03 cells). 2. Subcellular distribution of binding and unlikely role of glutathione-S-transferase. Prostaglandins 1990-40:431-443.PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Furuta, N. Hunter, T. Barkley, Jr., E. Hall, and M. Lucas. Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res 1988; 48:3008-3013.PubMedGoogle Scholar
  9. 9.
    B.C. Millar, and S. Jinks. Do prostaglandins affect cellular radiosensitivity in vitro? Int J Radiat Biol 1984; 46:367-373.CrossRefGoogle Scholar
  10. 10.
    A.K. Balapure, C.E. Rexroad, K. Kawada, D.S. Watt, and T.A. Fitz. Structural requirements for prostaglandin analog interaction with ovine corpus luteum prostaglandin F2α receptor. Biochem Pharmacol 1989; 38:2375-2381.PubMedCrossRefGoogle Scholar
  11. 11.
    T.A. Fitz, R.M. Wah, W.A. Schmidt, and C.A. Winkel. Physiologic characterization of transformed and cloned rat granulosa cells. Biol Reprod 1989;40:250.PubMedCrossRefGoogle Scholar
  12. 12.
    T.A. Fitz, P.B. Hoyer, and G.D. Niswender. Interactions of prostaglandins with subpopulations of ovine luteal cells. I. Stimulatory effects of prostaglandins E1, E2, and I2. Prostaglandins 1984;28:119.PubMedCrossRefGoogle Scholar
  13. 13.
    A.J.W. Hsueh, E.Y. Adashi, P.B.C. Jones, and T.H. Wells, Jr. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev 1984; 5:76-127.PubMedCrossRefGoogle Scholar
  14. 14.
    T.L. Walden. Radioprotection of mouse hematopoietic stem cells by leukotriene A4 and lipoxin B4. J Radiat Res 1988; 29:255-260.PubMedCrossRefGoogle Scholar
  15. 15.
    J. Furth, and O.B. Furth. Neoplastic diseases produced in mice by general irradiation with x-rays; incidence and types of neoplasms. Am J Cancer 1936; 28:54-65.Google Scholar
  16. 16.
    S. Katsh, and A. Edelmann. The influence of gonadectomy, sex, and strain upon the survival times of x-irradiated mice. In: Effects of Ionizing Radiation on the Reproductive System, W.D. Carlson and F.X. Gassner, eds., Pergamon Press, New York, 1964, pp 427-431.Google Scholar
  17. 17.
    D. Hess, K.N. Prasad. Modification of radiosensitivity of mammalian cells by cyclic nucleotides. Life Sciences 1981; 29:1-4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • T. L. WaldenJr.
    • 1
  • N. K. Farzaneh
    • 1
  • J. M. Speicher
    • 1
  • T. A. Fitz
    • 2
  1. 1.Radiation Biochemistry DepartmentArmed Forces Radiobiology Research InstituteBethesdaUSA
  2. 2.Department of Obstetrics and GnyecologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations