Advertisement

Reaction of DNA Peroxyl Radicals with Cysteamine and Glutathione: The Formation of Sulfoxyl Radicals

  • M. D. Sevilla
  • M. Yan
  • D. Becker
  • S. Gillich
Chapter
Part of the Developments in Oncology book series (DION, volume 67)

Abstract

The oxygen enhancement effect has been attributed to defect (radical) fixation by oxygen which prevents repair by sulfhydryls (1–4). Actually, in model systems, oxygen in the absence of thiols is a slight radioprotector of DNA and does not act to increase damage (5,6). Indigenous thiols not only account for the radioprotective effects but their radical reactions in the presence of oxygen are also a likely source of the oxygen enhancement effect. Prutz has suggested in recent studies that disulfide anion radicals formed by thiyl radical attack on thiol (reaction 1) are the primary species responsible for the radioprotective effect of thiols (7).

Keywords

Peroxyl Radical Hydrogen Abstraction Radioprotective Effect Thiyl Radical Reactive Hydrogen Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Howard-Flanders, P., Nature. 186, 485–487, 1960.PubMedCrossRefGoogle Scholar
  2. 2.
    Hutchinson, F,, Radiat. Res. 14, 721–723, 1961PubMedCrossRefGoogle Scholar
  3. 3.
    Alper, T., Cellular Radiobiology, (Cambridge: Cambridge University Press), 1979, p. 58.Google Scholar
  4. 4.
    Schulte-Frohlinde, D., Free Radical Res. Commun. 6, 181–184, 1989.CrossRefGoogle Scholar
  5. 5.
    Held, K.D., Harrop, H.A. and Michael, B.D., Int. J. Radiat. Biol. 45, 615– 626, 1984.CrossRefGoogle Scholar
  6. 6.
    Quintiliani, M., Int. J. Radiat. Biol. 50, 573–594, 1986.CrossRefGoogle Scholar
  7. 7.
    Prutz, W.A., Int. J. Radiat. Biol. 56, 21–33, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Becker, D., Swarts, S,, Champagne, M. and Sevilla, M.D., Int. J. Radiat. Biol. 53, 767–786, 1988.CrossRefGoogle Scholar
  9. 9.
    Sevilla, M.D., Yan, M. and Becker, D., Biochem. Biophys. Res. Commun. 155, 405–410, 1988.PubMedCrossRefGoogle Scholar
  10. 10.
    Swarts, S.G., Becker, D., DeBolt, S. and Sevilla, M.D., J. Phys. Chem. 93, 155–161, 1989.CrossRefGoogle Scholar
  11. 11.
    Sevilla, M.D., Yan, M., Becker, D. and Gillich, S., Free Radical Res. Commun. 6, 99 -102,1989 .CrossRefGoogle Scholar
  12. 12.
    Prutz, W.A. and Monig, H., Int. J. Radiat. Biol. 52, 677–682, 1987.CrossRefGoogle Scholar
  13. 13.
    Milvy, P., Radiat. Res. 47, 83–93, 1971.PubMedCrossRefGoogle Scholar
  14. 14.
    Schoenich, C, Asmus, K. -D., Dillinger, U. and Bruchhausen, F.V., Biochem. Biophys. Res. Commun., 161, 113–120, 1989.CrossRefGoogle Scholar
  15. 15.
    Sevilla, M. D., Becker, D., and Yan, M., Int. J. Radiat. Biol., 57:65–81,1990.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. D. Sevilla
    • 1
  • M. Yan
    • 1
  • D. Becker
    • 1
  • S. Gillich
    • 1
  1. 1.Department of ChemistryOakland UniversityRochesterUK

Personalised recommendations