Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 57))

Abstract

Multidrug resistance associated with overexpression of P-glycoprotein (Pgp-MDR) is a well-documented experimental phenomenon whose pharmacologic, biochemical, and molecular basis is known. Its importance resides in the fact that it appears to have clinical correlates, so attempts to reverse or circumvent Pgp-MDR clearly assume high priority. There is a considerable body of experimental work showing that certain classes of membrane-active drugs are capable of circumventing MDR to varying degrees, but it remains to be seen whether these agents will be useful clinically. The goal in this chapter is to discuss the actions of these modulators. The general features of Pgp-MDR will be briefly outlined and its and differences from other forms of MDR recently described will be highlighted. The main focus will be on compounds that can modulate Pgp-MDR. Our current understanding of the mechanism(s) by which these agents work in MDR cells will be summarized, current models for modulator design will be discussed, and some of the ongoing clinical studies with these agents, as well as their attendant problems will be outlined. The conclusion offers some thoughts about future directions of modulator studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endicott, J.A., and Ling, V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 58:137–171, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. van der Bliek, A.M., and Borst P. Multidrug resistance. Adv. Cancer Res. 52:165–203, 1989.

    Article  PubMed  Google Scholar 

  3. Moscow, J.A., and Cowan, K.H. Multidrug resistance. J. Natl. Cancer Inst. 80:14–20, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Beck, W.T. The cell biology of multiple drug resistance. Biochem. Pharmacol. 36: 2879–2887, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Roninson, I.B. (ed).Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells. Plenum Publishing, New York, in press, 1990.

    Google Scholar 

  6. Beck, W.T. Multidrug resistance and its circumvention. Eur. J. Cancer 26:513–515, 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Friche, E., Skovsgaard, T., and Dano, K. Multidrug resistance: drug extrusion and its counteraction by chemosensitizers. Eur. J. Haematol. 42(Suppl 48):59–67, 198

    Article  Google Scholar 

  8. Chen, C.-J., Chin, J.E., Ueda, K., Clark, D.P., Pastan, I., Gottesman, M.M., and Roninson, I.B. Internal duplication and homology with bacterial transport proteins in the mdrl (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Gros, P., Croop, J., and Housman, D. Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47: 371–380, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Gerlach, J.H., Endicott, J.A., Juranka, P.F., Henderson, G., Sarangi, F., Deuchars, K.L., and Ling, V. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324:485–489, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Azzaria, M., Schurr, E., and Gros, P. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdrl gene abolish its ability to confer multidrug resistance. Mol. Cell. Biol. 9:5289–5297, 1989.

    PubMed  CAS  Google Scholar 

  12. Bhalla, K., Hindenburg, A., Taub, R.N., Grant, S. Isolation and characterization of an anthracyline-resistant human leukemic cell line. Cancer Res. 45:3657–3662, 1985.

    PubMed  CAS  Google Scholar 

  13. McGrath, T., and Center, M.S. Adriamycin resistance in HL60 cells in the absence of detectable P-glycoprotein. Biochem. Biophys. Res. Commun. 145:1171–1176, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Danks, M.K., Yalowich, J.C., and Beck, W.T. Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26).Cancer Res. 47:1297–1301, 1987.

    PubMed  CAS  Google Scholar 

  15. Harker, W.G., Slade, D.L., Dalton, W.S., Meltzer, P.S., and Trent, J.M. Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P-glycoprotein overexpression. Cancer Res. 49:4542–4549, 1989.

    PubMed  CAS  Google Scholar 

  16. Danks, M.K., Schmidt, CA., Cirtain, M.C., Suttle, D.P., and Beck, W.T. Altered catalytic activity of and DNA cleavage by DNA topoisomerase II from human leukemic cells selected for resistance to VM-26._Biochemistry 27:8861–8869, 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Fairchild, C.R., Ivy, S.P., Kao-Shan, C.-S., Whang-Peng, J., Rosen, N., Israel, M.A., Melera, P.W., Cowan, K.H., and Goldsmith, M.E. Isolation of amplified and over-expressed DNA sequences from adriamycin-resistant human breast cancer cells. Cancer Res 47:5141–5148, 1987.

    PubMed  CAS  Google Scholar 

  18. Sinha, B.K., Haim, N., Dusre, L., Kerrigan, D., and Pommier, Y. DNA strand breaks produced by etoposide (VP-16,213) in sensitive and resistant human breast tumor cells: implications for the mechanism of action. Cancer Res. 48:5096–5100, 1988.

    PubMed  CAS  Google Scholar 

  19. Deffie, A.M., Batra, J.K., and Goldenberg, G.J. Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and-resistant P388 leukemia cell lines. Cancer Res. 49:58–62, 1989.

    PubMed  CAS  Google Scholar 

  20. Cowan, K.H., Batist, G., Tulpule, A., Sinha, B.K., and Myers, C.E. Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc. Natl. Acad. Sci. USA 83:9328–9332, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Bellamy, W.T., Dalton, W.S., Meltzer, P., and Dorr, R.T. Role of glutathione and its associated enzymes in multidrug-resistant human myeloma cells. Biochem. Pharmacol. 38:787–793, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Yusa, K., Hamada, H., and Tsuruo, T. Comparison of glutathione S-transferase activity between drug-resistant and-sensitive human tumor cells: is glutathione S-transferase associated with multidrug resistance? Cancer Chemother. Pharmacol. 22:17–20, 1988.

    CAS  Google Scholar 

  23. Myers, C. Anthracyclines. In: Cancer Chemotherapy 8, Pinedo, H.M., and Chabner, B.A. (eds). Elsevier Science, Amsterdam, pp. 52–64, 1986.

    Google Scholar 

  24. Goldstein, L.J., Galski, H., Fojo, A., Willingham, M., Lai S.-L, Gazdar, A., Pirker, R., Green, A., Crist, W., Brodeur, G.M., Lieber, M., Cossman, J., Gottesman, M.M., and Pastan, I. Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 81:116–124, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Beck, W.T. Drug accumulation and binding in P-glycoprotein-associated multidrug resistance. In: Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, Roninson, I.B. (ed) Plenum Publishing, New York, pp. 215–227, 1991.

    Chapter  Google Scholar 

  26. Cornwell, M.M., Safa, A.R., Felsted, R.L., Gottesman, M.M., and Pastan, I. Membrane vesicles from multidrug-resistant human cancer cells contain a specific 150-to 170-kDa protein detected by photoaffinity labeling. Proc. Natl. Acad. Sci. USA 83:3847–3850, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Safa, A.R., Glover, C.J., Meyers, M.B., Biedler, J.L., and Felsted, R.L. Vinblastine photoaffinity labeling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells. J. Biol. Chem. 261:6137–6140, 1986.

    PubMed  CAS  Google Scholar 

  28. Safa, A.R., Mehta, N.D., and Agresti, M. Photoaffinity labeling of P-glycoprotein in multidrug resistant cells with photoactive analogs of colchicine. Biochem. Biophys. Res. Commun. 162:1402–1408, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Safa, A.R. Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil. Proc. Natl. Acad. Sci. USA 85:7187–7191, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Yusa, K., and Tsuruo, T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 49:5002–5006, 1989.

    PubMed  CAS  Google Scholar 

  31. Qian, X., and Beck, W.T. Binding of an optically pure photoaffinity analog of verapamil, LU-49888, to P-glycoprotein from multidrug-resistant human leukemic cell lines. Cancer Res. 50:1132–1137, 1990.

    PubMed  CAS  Google Scholar 

  32. Riehm, H., and Biedler, J.L. Potentiation of drug effect by Tween 80 in Chinese hamster cells resistant to actinomycin D and daunomycin. Cancer Res. 32:1195–1200, 1972.

    PubMed  CAS  Google Scholar 

  33. Skovsgaard T. Circumvention of resistance to daunorubicin by N-acetyldaunorubicin in Ehrlich ascites tumor. Cancer Res. 40:1077–1083, 1980.

    PubMed  CAS  Google Scholar 

  34. Tsuruo, T., lida, H., Tsukagoshi, S., and Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41:1967–1972, 1981.

    PubMed  CAS  Google Scholar 

  35. Kamiwatari, M., Nagata, Y., Kikuchi, H., Yoshimura, A., Sumizawa, T., Shudo, N., Sakoda, R., Seto, K., and Akiyama, S.-I. Correlation between reversing of multidrug resistance and inhibiting of [3H]azidopine photolabeling of P-glycoprotein by newly synthesized dihydropyridine analogues in a human cell line. Cancer Res. 49:3190–3195, 1989.

    PubMed  CAS  Google Scholar 

  36. Nogae, I., Kohno, K., Kikuchi, J., Kuwano, M., Akiyama, S.-L, Kiue, A., Suzuki, K.-L, Yoshida, Y., Cornwell, M.M., Pastan, I., and Gottesman, M.M. Analysis of structural features of dihydropyridine analogs needed to reverse multidrug resistance and to inhibit photoaffinity labeling of P-glycoprotein. Biochem. Pharmacol. 38:519–527, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Yoshinari, T., Iwasawa, Y., Miura, K., Takahashi, I.S., Fukuroda, T., Suzuki, K., and Okura, A. Reversal of multidrug resistance by new dihydropyridines with lower calcium antagonistic activity. Cancer Chemother. Pharmacol. 24:367–370, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y. Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 42:4730–4733, 1982.

    PubMed  CAS  Google Scholar 

  39. Ramu, N., and Ramu, A. Circumvention of adriamycin resistance by dipyridamole analogues: a structure-activity relationship study. Int. J. Cancer 43:487–491, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Asoh, K.-I., Saburi, Y., Sato, S.-I., Nogae, I., Kohno, K., and Kuwano, M. Potentiation of some anticancer agents by dipyridamole against drug-sensitive and drug-resistant cancer cell lines, Jpn. J. Cancer Res. 80:475–481, 1989.

    CAS  Google Scholar 

  41. Ramu, A., Fuks, Z., Gatt, S., and Glaubiger, D. Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by perhexiline maleate. Cancer Res, 44: 144–148, 1984.

    PubMed  CAS  Google Scholar 

  42. Chauffert, B., Martin, M.S., Hammann, A., Michel, M.F., and Martin, F. Amiodarone-induced enhancement of doxorubicin and 4′ deoxydoxorubicin cytotoxicity to rat colon cancer cells in vitro and in vivo. Cancer Res. 46:825–830, 1986.

    PubMed  CAS  Google Scholar 

  43. Wakusawa, S., Miyamoto, K., and Koshiura, R. Increase of sensitivity and uptake of vinblastine by reserpine in rat ascites hepatoma. Jpn. J. Pharmacol. 36:187–195, 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Zamora, J.M., Pearce, H.L., and Beck, W.T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol. 33:454–462, 1988.

    PubMed  CAS  Google Scholar 

  45. Inaba, M., and Nagashima, K. Non-antitumor vinca alkaloids reverse multidrug resistance in P388 leukemia cells in vitro. Jpn. J. Cancer Res. 77:197–204, 1986.

    CAS  Google Scholar 

  46. Klohs, W.D., and Steinkampf, R.W. The effect of lysosomotropic agents and secretory inhibitors on anthracycline retention and activity in multiple drug-resistant cells. Mol. Pharmacol. 34:180–185, 1989.

    Google Scholar 

  47. Zamora, J.M., and Beck, W.T. Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem. Pharmacol. 35:4303–4310, 1986.

    Article  PubMed  CAS  Google Scholar 

  48. Shiraishi, N., Akiyama, S.-I., Kobayashi, M., and Kuwano, M. Lysosomotropic agents reverse multiple drug resistance in human cancer cells. Cancer Lett. 30:251–259, 1986.

    Article  PubMed  CAS  Google Scholar 

  49. Shiraishi, N., Akiyama, S.-I., Nakagawa, M., Kobayashi, M., and Kuwano, M. Effect of bisbenzylisoquinoline (biscoclaurine) alkaloids on multidrug resistance in KB human cancer cells. Cancer Res. 47:2413–2416, 1987.

    PubMed  CAS  Google Scholar 

  50. Nakagawa, M., Akiyama, S.-I., Yamaguchi, T., Shiraishi, N., Ogata, J., and Kuwano, M. Reversal of multidrug resistance by synthetic isoprenoids in the KB human cancer cell line. Cancer Res. 46:4453–4457, 1986.

    PubMed  CAS  Google Scholar 

  51. Yang, C.-P.H., DePinho, S.G., Greenberger, L.M., Areci, R.J., and Horwitz, S.B. Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endo-metrium of gravid uterus. J. Biol. Chem. 264:782–788, 1989.

    PubMed  CAS  Google Scholar 

  52. Ramu, A. Glaubiger, D., and Fuks, Z. Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by tamoxifen and other triparanol analogues. Cancer Res. 44:4392–4395, 1984.

    PubMed  CAS  Google Scholar 

  53. Goslan, M.P., Lum, B.L., and Sikic B.I. Reversal by cefoperazone of resistance to etoposide, doxorubicin, and vinblastine in multidrug resistant human sarcoma cells. Cancer Res. 49:6901–6905, 1989.

    Google Scholar 

  54. Scudder, S.A., Brown, J.M., and Sikic, B.I. DNA cross-linking and cytotoxicity of the alkylating cyanomorpholino derivative of doxorubicin in multidrug-resistant cells. J. Natl. Cancer Inst. 80.1294–1298, 1988.

    Article  PubMed  CAS  Google Scholar 

  55. Ganapathi, R., Grabowski, D., Sweatman, T.W., Seshadri, R., and Israel, M. N-Benzyladriamycin-14-valerate versus progressively doxorubicin resistant murine tumors: cellular pharmacology and characterization of cross resistance in vitro and in vivo. Br. J. Cancer 60:819–826, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Slater, L.M., Sweet, P., Stupecky, M., and Gupta, S. Cyclosporin A reverses vincristine and daunorubicin resistance in acute lymphatic leukemia in vivo. J. Clin. Invest. 77:1405–1408, 1986.

    Article  PubMed  CAS  Google Scholar 

  57. Twentyman, P.R., Fox, N.E., and White, D.J.G. Cyclosporin A and its analogues as modifiers of adriamycin and vincristine resistance in a multidrug resistant human lung cancer cell line. Br. J. Cancer 56:55–57, 1987.

    Article  PubMed  CAS  Google Scholar 

  58. Pearce, H.L., Safa, A.R., Bach, N.J., Winter, M.A., Cirtain, M.C., and Beck, W.T. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc. Natl. Acad. Sci. USA 86:5128–5132, 1989.

    Article  PubMed  CAS  Google Scholar 

  59. Ford, J.M., Prozialeck, W.C., and Hait, W.N. Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol. Pharmacol. 35:105–115, 1989.

    PubMed  CAS  Google Scholar 

  60. Beck, W.T., Cirtain, M.C., Glover, C.J., Felsted, R.L., and Safa, A.R. Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine. Biochem. Biophys. Res. Commun. 153:959–966, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. Beck, W.T., Cirtain, M.C., Look, A.T., and Ashmun, R.A. Reversal of Vinca alkaloid resistance but not multiple drug resistance in human leukemic cells by verapamil. Cancer Res. 46:778–784, 1986.

    PubMed  CAS  Google Scholar 

  62. Qian, X.-D. and Beck, W.T. Progesterone photoaffinity labels P-glycoprotein in multi-drug resistant human leukemic lymphoblasts. J. Biol. Chem. 265:18753–18756, 1990.

    PubMed  CAS  Google Scholar 

  63. Yalowich, J.C. and Ross, W.E. Potentiation of etoposide induced DNA damage by calcium antagonists in L1210 cells in vitro. Cancer Res. 44:3360–3365, 1984.

    PubMed  CAS  Google Scholar 

  64. Chlebowski, R.T., Block, J.B., Cundiff, D., and Dietrich, M.F. Doxorubicin cytotoxicity enhanced by local anesthetics in a human melanoma cell line. Cancer Treat. Rep. 66: 121–125, 1982.

    PubMed  CAS  Google Scholar 

  65. Howell, S.B., Horn, D., Sanga, R., Vick, J.S., and Abramson, I.S. Comparison of the synergistic potentiation of etoposide, doxorubicin, and vinblastine cytotoxicity by dipyridamole. Cancer Res. 49:3178–3183, 1989.

    PubMed  CAS  Google Scholar 

  66. Simmonds, A.P., Moyes, P., Nicol, A., Davidson, K.G., and Faichney, A. Enhancement of cytotoxicity of vindesine and cw-platinum for human lung tumours by the use of verapamil in vitro. Br. J. Cancer 54:1015–1018, 1986.

    Article  CAS  Google Scholar 

  67. Janis, R.A. and Scriabine, A. Sites of action of Ca2+ channel inhibitors. Biochem. Pharmacol. 32:3499–3507, 1983.

    CAS  Google Scholar 

  68. Ranganathan, S. and Jackson, R.L. Effect of calcium-channel-blocking drugs on lysosomal function in human skin fibroblasts. Biochem. Pharmacol 33:2377–2382, 1984.

    CAS  Google Scholar 

  69. Tsuruo, T., Iida, H., Yamashiro, M., Tsukagoshi, S., and Sakurai, Y. Enhancement of vincristine-and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochem. Pharmacol. 31:3138–3140, 1982.

    Article  PubMed  CAS  Google Scholar 

  70. Hait, W.N., Stein, J.M., Koletsky, A.J., Harding, M.W., and Handschumacher, R.E. Activity of cyclosporin A and a non-immunosuppressive cyclosporin against multidrug resistant leukemic cell lines. Cancer Commun. 1:35–43, 1989.

    PubMed  CAS  Google Scholar 

  71. Goldberg, H., Ling, V., Wong, P.Y., and Skorecki, K. Reduced cyclosporin accumulation in multidrug-resistant cells. Biochem. Biophys. Res. Commun. 152:552–558, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Cornwell, M.M., Gottesman, M.M., and Pastan, I.H. Increased vinblastine binding to membrane vesicles from multidrug-resistant KB cells. J. Biol. Chem. 281:7921–7928, 1986.

    Google Scholar 

  73. Naito, M. and Tsuruo, T. Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res. 49:1452–1455, 1989.

    PubMed  CAS  Google Scholar 

  74. Naito, M., Hamada, H., and Tsuruo, T. ATP/Mg2+-dependent binding of vincristine to the plasma membrane of multidrug-resistant K562 cells. J. Biol. Chem. 263:11887–11891, 1988.

    PubMed  CAS  Google Scholar 

  75. Akiyama, S.-I., Yoshimura, A., Kikichi, H., Sumizawa, T., Kuwano, M., and Tahara, Y. Synthetic isoprenoid photoaffinity labeling of P-glycoprotein specific to multidrug-resistant cells. Mol. Pharmacol. 36:730–735, 1989.

    PubMed  CAS  Google Scholar 

  76. Yang, C.P., Mellado, W., and Horwitz, S.B. Azidopine photoaffinity labeling of multi-drug resistance-associated glycoproteins. Biochem. Pharmacol. 37:1417–1421, 1988.

    Article  PubMed  CAS  Google Scholar 

  77. Bruggemann, E.P., Germann, U.A., Gottesman, M.M., and Pastan, I. Two different regions of phosphoglycoprotein are photoaffinity-labeled by azidopine. J. Biol. Chem. 264:15483–15488, 1989.

    PubMed  Google Scholar 

  78. Yoshimura, A., Kuwazuru, Y., Sumizawa, T., Ichikawa, M., Ikeda, S.-I., Uda, T., and Akiyama, S.-I. Cytoplasmic orientation and two-domain structure of the multidrug transporter, P-glycoprotein, demonstrated with sequence-specific antibodies. J. Biol. Chem. 264:16282–16291, 1989.

    PubMed  CAS  Google Scholar 

  79. Beck, W.T., Danks, M.K., Yalowich, J.C, Zamora, J.M., and Cirtain, M.C. Different mechanisms of multiple drug resistance in two human leukemic cell lines. In: Mechanisms of Drug Resistance in Neoplastic Cells, Wooley, P. and Tew, K. (eds). Academic Press, New York, pp. 211–222, 1988.

    Google Scholar 

  80. Willingham, M.C, Cornwell, M.M., Cardarelli, CO., Gottesman, M.M., and Pastan, I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and-sensitive KB cells: effects of verapamil and other drugs. Cancer Res. 46:5941–5946, 1986.

    PubMed  CAS  Google Scholar 

  81. Hindenburg, A.A., Gervasoni, J.E. Jr., Krishna, S., Stewart, V.J., Rosado, M., Lutzky, J., Bhalla, K., Baker, M.A., and Taub, R.N. Intracellular distribution and pharma-cokinetics of daunorubicin in anthracycline-sensitive and-resistant HL-60 cells. Cancer Res. 49:4607–4614, 1989.

    PubMed  CAS  Google Scholar 

  82. Chauffert, B., Martin, F., Caignard, A., Jeannin, J.-F., and Leclerc, A. Cytofluorescence localization of adriamycin in resistant colon cancer cells. Cancer Chemother. Pharmacol. 13:14–18, 1984.

    Article  PubMed  CAS  Google Scholar 

  83. Broxterman, H.J., Pinedo, H.M., Kuiper, CM., Kaptein, L.C.M, Schuurhuis, G.J., and Lankelma, J. Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells. FASEB J. 2:2278–2282, 1988.

    PubMed  CAS  Google Scholar 

  84. Broxterman, H.J., Pinedo, H.M., Kuiper, CM., Schuurhuis, G.J., and Lankelma, J. Glycolysis in P-glycoprotein-overexpressing human tumor cell lines. Effects of resistance-modifying agents. FEBS Lett. 247:405–410, 1989.

    CAS  Google Scholar 

  85. Beck, W.T., Cirtain, M.C, and Lefko, J.L. Energy-dependent reduced drug binding as a mechanism of Vinca alkaloid resistance in human leukemic lymphoblasts. Mol. Pharmacol. 24:485–492, 1983.

    PubMed  CAS  Google Scholar 

  86. Keizer, H.G. and Joenje, H. Increased cytosolic pH in multidrug-resistant human lung tumor cells: effect of verapamil. J. Natl Cancer Inst. 81:706–709, 1989.

    Article  PubMed  CAS  Google Scholar 

  87. Hasmann, M., Valet, G.K., Tapiero, H., Trevorrow, K., and Lampidis, T. Membrane potential differences between adriamycin-sensitive and-resistant cells as measured by flow cytometry. Biochem. Pharmacol. 38:305–312, 1989.

    Article  PubMed  CAS  Google Scholar 

  88. Vayuvegula, B., Slater, L., Meador, J., and Gupta, S. Correction of altered plasma membrane potentials. A possible mechanism of cyclosporin A and verapamil reversal of pleiotropic drug resistance in neoplasia. Cancer Chemother. Pharmacol. 22:163–168, 1988.

    Article  PubMed  CAS  Google Scholar 

  89. Tapiero, H., Munck, J.-N., Fourcade, A. and Lampidis, T.J. Cross-resistance to rhodamine 123 in adriamycin-and daunorubicin-resistant Friend leukemia cell variants. Cancer Res. 44:5544–5549, 1984.

    PubMed  CAS  Google Scholar 

  90. Warr, J.R., Brewer, F., Anderson, M., and Fergusson, J. Verapamil hypersensitivity of vincristine resistant Chinese hamster ovary cell lines. Cell Biol. Intl. Rep. 10:389–399, 1986.

    Article  CAS  Google Scholar 

  91. Cano-Gauci, D.F. and Riordan, J.R. Action of calcium antagonists on multidrug resistant cells. Biochem. Pharmacol. 36:2115–2123, 1987.

    Article  PubMed  CAS  Google Scholar 

  92. Tsuruo, T., Iida, H., Kawabata, H., Tsukagoshi, S., and Sakurai, Y. High calcium content of pleiotropic drug-resistant P388 and K562 leukemia and Chinese hamster ovary cells. Cancer Res 44:5095–5099, 1984.

    PubMed  CAS  Google Scholar 

  93. Huet, S. and Robert, J. The reversal of doxorubicin resistance by verapamil is not due to an effect on calcium channels. Int. J. Cancer 41:283–286, 1988.

    Article  PubMed  CAS  Google Scholar 

  94. Kessel, D. and Wilberding, C. Interactions between calcium antagonists, calcium fluxes and anthracycline transport. Cancer Lett. 25:97–101, 1984.

    Article  PubMed  CAS  Google Scholar 

  95. Yamashita, N., Hamada, H., Tsuruo, T., and Ogata, E. Enhancement of voltage-gated Na+ channel current associated with multidrug resistant in human leukemia cells. Cancer Res. 47:3736, 3741, 1987.

    PubMed  CAS  Google Scholar 

  96. Lee, S.C., Deutsch, C, and Beck, W.T. Comparison of ion channels in multidrug-resistant and-sensitive human leukemic cells. Proc. Natl. Acad. Sci. USA 85:2019–2023, 1988.

    Article  PubMed  CAS  Google Scholar 

  97. Meyers, M.B., Schneider, K.A., Spengler, B.A., Chang, T.D., and Biedler, J.L. Sorcin (VI9), a soluble acidic calcium-binding protein overproduced in multidrug-resistant cells. Identification of the protein by anti-sorcin antibody. Biochem. Pharmacol. 36:2373–2380, 1987.

    CAS  Google Scholar 

  98. Van der Bliek, A.M., Meyers, M.B., Biedler, J.L., Hes, E., and Borst, P. A 22-kd protein (sorcin/V19) encoded by an amplified gene in multidrug-resistant cells, is homologous to the calcium-binding light chain of calpain. EMBO J 5:3201–3208, 1986.

    PubMed  Google Scholar 

  99. Krupinski, J., Coussen, F., Bakalyar, H.A., Tang, W.-J., Feinstein, P.G., Orth, K., Slaughter, C., Reed, R.R., and Gilman, A.G. Adenylyl cyclase amino acid sequence: possible channel-or transporter-like structure. Science 244:1558–1564, 1989.

    Article  PubMed  CAS  Google Scholar 

  100. Catterall, W.B. Structure and function of voltage-sensitive ion channels. Science 242: 50–61, 1988.

    Article  PubMed  CAS  Google Scholar 

  101. Tsuruo, T., Iida, H., Nojiri, M., Tsukagoshi, S., and Sakurai, Y. Potentiation of chemo-therapeutic effect of vincristine in vincristine resistant tumor bearing mice by calmodulin inhibitor clomipramine. J. Pharm. Dyn. 6:145–147, 1983.

    Article  CAS  Google Scholar 

  102. Slater, L.M., Murray, S.L., and Weitzer, M.W. Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites carcinoma. J. Clin. Invest. 70:1131–1134, 1982.

    Article  PubMed  CAS  Google Scholar 

  103. Radel, S., Bankusli, I., Mayhew, E., and Rustum, Y.M. The effects of verapamil and a tiapamil analogue, DMDP, on adriamycin-induced cytotoxicity in P388 adriamycin-resistant and-sensitive leukemia in vitro and in vivo. Cancer Chemother. Pharmacol. 21:25–30, 1988.

    CAS  Google Scholar 

  104. Mattern, J., Bak, M., and Volm, M. Occurrence of a multidrug-resistant phenotype in human lung xenografts. Br. J. Cancer 56:407–411, 1987.

    Article  PubMed  CAS  Google Scholar 

  105. Benson, A.B. Ill, Trump, D.L., Koeller, J.M., Egorin, M.I., Olman, E.A., White, R.S., Davis, T.E., and Tormey, D.C. Phase I study of vinblastine and verapamil given by concurrent IV infusion. Cancer Treat Rep. 69:795–799, 1985.

    PubMed  Google Scholar 

  106. Ozols, R.F., Cunnion, R.E., Klecker, R.W. Jr., Hamilton, T.C., Ostchega, Y., Parrillo, J.E., and Young, R.C. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J. Clin. Oncol. 5:641–647, 1985.

    Google Scholar 

  107. Bessho, F., Kinumaki, H., Kobayashi, M., Habu, H., Nakamura, K., Yokota, S., Tsuruo, T., and Kobayashi, N. Treatment of children with refractory acute lymphocytic leukemia with vincristine and diltiazem. Med. Pediatr. Oncol. 13:199–202, 1985.

    Article  PubMed  CAS  Google Scholar 

  108. Miller, R.L., Bukowski, R.M., Budd, G.T., Purvis, J., Weick, J.K., Shepard, K., Midha, K.K., and Ganapathi, R. Clinical modulation of doxorubicin resistance by the calmodulin-inhibitor, trifluoperazine: a phase I/II trial. J. Clin. Oncol. 6:880–888, 1988.

    PubMed  CAS  Google Scholar 

  109. Presant, G.A., Kennedy, P.S., Wiseman, C, Gala, K., Bouzaglou, S., Wyres, M., and Naessig, V. Verapamil reversal of clinical doxorubicin resistance in human cancer. A Wilshire Oncology Medical Group pilot phase MI study. Am. J. Clin. Oncol. 9:355–357, 1986.

    CAS  Google Scholar 

  110. Cairo, M.S., Siegel, S., Anas, N., and Sender, L. Clinical trial of continuous infusion verapamil, bolus vinblastine, and continous infusion VP-16 in drug-resistant pediatrie tumors. Cancer Res. 49:1063–1066, 1989.

    PubMed  CAS  Google Scholar 

  111. Dalton, W.S., Grogan, T.M., Meltzer, P.S., Scheper, R.J., Durie, B.G.M., Taylor, C.W., Miller, T.P., and Salmon, S.E. Drug-resistance in mulptiple myeloma and non-Hodgkin’ s lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J. Clin. Oncol. 7:415–424, 1989.

    PubMed  CAS  Google Scholar 

  112. Echizen, H., Brecht, T., Neidergesass, S., Vogelgesang, B., and Eichelbaum, M. The effect of dextro-, levo-, and racemic verapamil on atrioventricular conduction in humans. Am. Heart J. 109:210–217, 1985.

    Article  PubMed  CAS  Google Scholar 

  113. Keilhauer, G., Emling, F., Raschack, M., Gries, J., and Schlick, E. The use of R-verapamil (R-VPM) is superior to racemic VPM in breaking multidrug resistance (MDR) of malignant cells. Proc. Am. Assoc. Cancer Res. 30:503, 1989.

    Google Scholar 

  114. Horton, J.K., Thimmaiah, K.N., Houghton, J.A., Horowitz, M.E., and Houghton, P.J. Modulation by verapamil of vincristine pharmacokinetics and toxicity in mice bearing human tumor xenografts. Biochem. Pharmacol. 38:1727–1736, 1989.

    Article  PubMed  CAS  Google Scholar 

  115. Merriman, R.L., Dantzig, A.H., Engelhardt, J., Minor, P.L., Poore, G.A., Shackelford, K.A., Tanzer, L.R., VanPelt, C, Winter, M.A., Beck, W.T., and Pearce, H.L. Increased toxicity of vincristine (VCR) when combined with the multidrug resistance (MDR) modulator, trimethoxybenzoylyohimbine (TMBY).Proc. Am. Assoc. Cancer Res. 31, 361, 1990.

    Google Scholar 

  116. Beck, W.T., Cirtain, M.C., Danks, M.K., Felsted, R.L., Safa, A.R., Wolverton, J.S., Suttle, D.P., and Trent, J.M. Pharmacological, molecular, and cytogenetic analysis of “ atypical” multidrug-resistant human leukemic cells. Cancer Res. 47:5455–5460, 1987.

    PubMed  CAS  Google Scholar 

  117. Beck, W.T. Strategies to circumvent multidrug resistance due to P-glycoprotein or to altered DNA topoisomerase II. Bull. Cancer 77:1131–1141, 1990.

    PubMed  CAS  Google Scholar 

  118. Vasanthakumar, G. and Ahmed, N.K. Modulation of drug resistance in a daunorubicin resistant subline with oligonucleoside methylphosphonates. Cancer Commun. 1:225–232, 1989.

    PubMed  CAS  Google Scholar 

  119. Salmon, S.E., Soehnlen, B., Dalton, W.S., Meltzer, P., and Scuderi, P. Effects of tumor necrosis factor on sensitive and multidrug resistant human leukemia and myeloma cell lines. Blood 74:1723–1727, 1989.

    PubMed  CAS  Google Scholar 

  120. Lyall, R.M., Hwang, J., Cardarelli, C, Fitzgerald, D., Akiyama, S.-I., Gottesman, M.M., and Pastan, I. Isolation of human KB cell lines resistant to epidermal growth factor-Pseudomonas exotoxin conjugates. Cancer Res. 47:2962–2966, 1987.

    Google Scholar 

  121. Fizgerald, D.J., Willingham, M.C., Cardarelli, CO., Hamada, H., Tsuruo, T., Gottesman, M.M., and Pastan, I. A monoclonal antibody-Pseudomonas toxin conjugate that specifically kills multidrug-resistant cells. Proc. Natl. Acad. Sci. USA 84:4288–4292, 1987.

    Article  Google Scholar 

  122. Tsuruo, T., Hamada, H., Sato, S., and Heike, Y. Inhibition of multidrug-resistant human tumor growth in athymic mice by anti-P-glycoprotein monoclonal antibodies. Jpn. J. Cancer Res. 80:627–631, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beck, W.T. (1991). Modulators of P-glycoprotein-associated multidrug resistance. In: Ozols, R.F. (eds) Molecular and Clinical Advances in Anticancer Drug Resistance. Cancer Treatment and Research, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3872-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3872-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6726-0

  • Online ISBN: 978-1-4615-3872-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics