Anticancer Drugs Based on Analogues of Platinol Derived from Histidine

  • Charles E. CarraherJr.
  • Melanie M. Williams


The reaction products of tetrachloroplatinate (II) and histidine are studied as a function of pH employing elemental analysis, NMR, MS and IR in preparation of the use of site-specific proteins as carriers for the cis-dichloroplatinum II moiety. Unlike the analogous products derived from simple diamines, the products are a mixture of units with the structures dependent on the pH of the reaction system.


Carboxylate Group Donor Atom Nitrogen Donor Imidazole Group Tridentate Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Carraher and R. Strothers, in: “Applied Bioactive Polymeric Systems,” C. G. Gebelein, C. E. Carraher & V. Foster, Eds., Plenum, NY, 1989, pp. 139–150.Google Scholar
  2. 2.
    D. Siegmann, D. Brenner and C. Carraher, PMSE, 59, 535 (1988).Google Scholar
  3. 3.
    C. Carraher, R. Strothers and D. Brenner, PMSE, 57,173 (1987).Google Scholar
  4. 4.
    D. Siegmann, C. Carraher and A. Friend, J. Polymer Materials, 4, 19 and 29 (1987).Google Scholar
  5. 5.
    J. P. Greenstein and M. Winitz, “Chemistry of the Amino Acids,” Vol. 3, John Wiley and Sons, New York, 1961, Chapter 6.Google Scholar
  6. 6.
    G. Wiedemann, J. Prakt. Chem., 42, 255 (1847); 43, 271 (1848).Google Scholar
  7. 7.
    H. Ley, Z. Electrochem., 10, 954 (1904).CrossRefGoogle Scholar
  8. 8.
    H. Ley, Ber., 42, 354 (1909); B. Kirson and Barsily, Bull. Chim. Soc. France, 1336 (1957).Google Scholar
  9. 9.
    M. N. Hughes, “The Inorganic Chemistry of Biological Processes,” John Wiley and Sons, New York, 1972, Chapter 1.Google Scholar
  10. 10.
    D. R. Williams, Chem Rev., 72(3), 203 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    R.J. Angelici, in: “Inorganic Biochemistry, Vol. 1, G. L. Eichorn, Ed., Elsevier, New York, 1973.Google Scholar
  12. 12.
    H. Sigel, “Metal Ions in Biological Systems,” Vol. 9, Marcel Dekker, New York, 1979, Preface and Chapter 1.Google Scholar
  13. 13.
    R. J. Sundberg and R. B. Martin, Chem. Rev., 74(4), 470 1974.CrossRefGoogle Scholar
  14. 14.
    H. P. Block, in: “Inorganic Polymers,” F. G. A. Stone and W. A. G. Graham, Eds., Academic Press, New York, 1962, Chapter 5, p. 189–307.Google Scholar
  15. 15.
    C. A. McAuliffe, J. V. Quagliano and L. M. Vallarino, Inorg. Chem., 5, 1996 (1966).CrossRefGoogle Scholar
  16. 16.
    B. Rosenburg, in: “Nucleic Acid-Metal Ion Interactions,” T.G.Spiro, Ed., Wiley-Interscience, New York, 1980, pp. 1–29.Google Scholar
  17. 17.
    C. F. J. Barnard, M. J. Cleare, P. C. Hydes, Chemistry in Britain, 1001 (1986).Google Scholar
  18. 18.
    D. R. Williams, Inorg. Chem. Acta, Rev., 123, (1972).Google Scholar
  19. 19.
    A. J. Carlson, K. E. Trainor and E. C. Walton, J. Proc. Roy. Soc. New South Wales, 108, 6 (1975).Google Scholar
  20. 20.
    A. J. Carlson, R. J. Banner, R. P. Gale, N. T. McArdle, K. E. Trainor and E. C. Walton, J. Clin. Hemet. Oncol., 7, 294 (1977).Google Scholar
  21. 21.
    R. D. Graham and D. R. Williams, J. Inorg. Nucl. Chem, 41, 1245 (1979).CrossRefGoogle Scholar
  22. 22.
    H. R. Alicock, R. W. Allen and J. P. O’Brien, J. Am. Chem. Soc., 99 (12), 3984 (1977).CrossRefGoogle Scholar
  23. 23.
    F. R. N. Gurd and P. E. Wilcox, in: “Advances in Protein Chemistry,” Vol. II, M. L. Anson, K. Baqiley and J. T. Edsall, Eds., Academic Press, New York, 1956, p. 311.Google Scholar
  24. 24.
    Ei-Ichiro Ochiai, “Bio-Inorganic Chemistry, An Introduction,” Allyn-Bacon, Massachusetts, 1977.Google Scholar
  25. 25.
    M. Hatano and T. Nozawa, in: “Metal Ions in Biological Systems,” Vol.5, H. Sigel, Ed., Marcel Dekker, New York, 1976.Google Scholar
  26. 26.
    S. T. Chow and C. A. McAuliffe, in: “Progress in Inorganic Chemistry,” Vol. 19, S. J. Lippard, Ed., Interscience, New York, 1975, p. 51.Google Scholar
  27. 27.
    B. L. Vallee, in: “Metal Ions in Biological Systems,” Advances in Experimental Medicine and Biology, Vol. 40, S. K. Dhar, Ed., Plenum Press, New York, 1973, p. 1.Google Scholar
  28. 28.
    “Handbook of Chemistry and Physics, 65th edition, CRC Publishing Co., Boca Raton, Florida, 1985.Google Scholar
  29. 29.
    R. Barker, “Organic Chemistry of Biological Compounds,” Prentice-Hall, New Jersey, 1971.Google Scholar
  30. 30.
    C. C. McDonald and W. D. Phillips, J. Am. Chem. Soc., 90, 6371 (1968).CrossRefGoogle Scholar
  31. 31.
    (a) R. A. Carlson and T. L. Brown, Inorg. Chem., 5, 268 (1966).CrossRefGoogle Scholar
  32. 32.
    T. G. Appleton and J. R. Hall, J. Chem. Soc., Chem Commun., 911, 1983.Google Scholar
  33. 33.
    D. P. Craig and R. S. Nyholm, in: “Chelating Agents and Metal Chelates,” F. P. Dywer and D. P. Mellor, Eds., Academic Press, New York, 1964.Google Scholar
  34. 34.
    F. R. Hartley, “The Chemistry of Platinum and Palladium,” Applied Science, London, 1973.Google Scholar
  35. 35.
    A. J. Thompson, R. J. P. Williams and S. Reslova, in: “Structure and Bonding,” Vol. 2, Springer-Verlag, Berlin, 1972.Google Scholar
  36. 36.
    R. B. Martin, in: “Metal Ions in Biological Systems,” Vol. 9, H. Sigel, (Ed.), Marcel Dekker Inc., NY, 1979, Chapter 1.Google Scholar
  37. 37.
    E. W. Wilson and B. Martin, Inorg. Chem., 9(3), 528 (1970).CrossRefGoogle Scholar
  38. 38.
    Y. Nakayama, K. Matsumoto, S. Ooi, H. Koroya, J.Chem. Soc. Chem. Comm., 170 (1973).Google Scholar
  39. 39.
    G. R. Lenz and A. E. Martell, Biochemistry, 3, 750 (1964).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Leberman and B. R. Rabin, Trans. Faraday Soc., 55, 1660 (1959).CrossRefGoogle Scholar
  41. 41.
    N. C. Li, B. E. Doody and J. M. White, J. Am. Chem. Soc., 79, 5859 (1957).CrossRefGoogle Scholar
  42. 42.
    D. D. Perrin and V. S. Sharma, J. Chem. Soc,A. 724 (1967).Google Scholar
  43. 43.
    J. H. Ritsma, J. C. Vander Grampel and F. Jellinek, Rec. Tray. Chin., 88, 411 (1969).CrossRefGoogle Scholar
  44. 44.
    H. Sigel, R. Criesser and D. B. McCormick, Arch. Biochem, Biophys., 134, 217 (1969).CrossRefGoogle Scholar
  45. 45.
    C. B. Acland and H. C. Freeman, Chem. Commum., 1016 (1971).Google Scholar
  46. 46.
    M. J. Adams, D. C. Hodgkin and V. A. Racburn. J. Chem. Soc., (A), 2632 (1970).Google Scholar
  47. 47.
    H. C. Freeman and R. P. Martin, J. Biol. Chem., 224, 4823 (1969).Google Scholar
  48. 48.
    L. E. Erickson, J. W. McDonald, J. K. Howie, R. P. Chow, J. Am. Chem. Soc., 90, 6371 (1968).CrossRefGoogle Scholar
  49. 49.
    L. M. Volshtein and I. G. Lukyanova, Neorg. Khim, 11(6), 708, (1966).Google Scholar
  50. 50.
    L. M. Volshtein and L. D. Dikanskaya, Russ J. Inorg. Chem., 19(1), 81, (1974).Google Scholar
  51. 51.
    L. M. Volshtein and L. D. Dikanskaya, Russ. J. Inorg. Chem., 13(9), 1304 (1968).Google Scholar
  52. 52.
    G. R. Brubaker and D. H.Busch, Inorg. Chem, 2110 (1966).Google Scholar
  53. 53.
    L. M. Volshtein and I. G. Luk’yanova, Russ. J. Inorg. Chem., 11(6), 708 (1966).Google Scholar
  54. 54.
    V. Saudek, H. Pivcova, D. Noskova and J. Drobnik, J. Inorg. Biochem., 23, 55 (1985).PubMedCrossRefGoogle Scholar
  55. 55.
    D. D.Nelson and H. Frye, Z. Naturforsch., 21, 630 (1966).Google Scholar
  56. 56.
    L. M. Volshtein and O. P. Slyudkin, Russ. J. Inorg. Chem., 17(8), 1168 (1972), and Reference 10; p. 169.Google Scholar
  57. 57.
    L. F. Grantham, T. S. Elleman and D. S. Martin, J. Am. Chem. Soc., 77, 2966 (1955).CrossRefGoogle Scholar
  58. 58.
    K. Nakamoto, Y. Morimoto and A. E. Martell, J. Am. Chem. Soc., 83, 4528 (1961).CrossRefGoogle Scholar
  59. 59.
    M.Avram and G. H. Mateescu, “Infrared Spectroscopy,” WileyInterscience, NY, 1972.Google Scholar
  60. 60.
    K. Nakamoto and P. J. McCarthy, “Spectroscopy and Structure of Metal Chelates,” John Wiley, NY, 1968.Google Scholar
  61. 61.
    K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds,” 4th edition, John Wiley, N Y, 1968.Google Scholar
  62. 62.
    F. S. Parker, “Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine,” Plenum Press, NY, 1971.CrossRefGoogle Scholar
  63. 63.
    R. J. Koegal, J. P. Greenstein, M. Winitz, S. N. Birnbaum and R. A. McCallum, J. Am. Chem. Soc., 77, 5708 (1955).CrossRefGoogle Scholar
  64. 64.
    M. Tsuboi, T. Onischi, I. Nakagawa, T. Shimanouchi and S. Mizushima, Spectrochim. Acta., 12, 253 (1958).CrossRefGoogle Scholar
  65. 65.
    J. R. Kincaid and K. Nakamoto, Spectrochim. Acta, 32A, 277 (1976).Google Scholar
  66. 66.
    L. Larson, Acta Chem. Scand., 4, 27 (1950).CrossRefGoogle Scholar
  67. 67.
    J. A. Kieft and K. Nakamoto, J. Inorg. Nucl. Chem., 29, 2561 (1967).CrossRefGoogle Scholar
  68. 68.
    K. Fukushima, T. Onishi, T. Shimanouchi and S. Mizushima, Spectrochim. Acta., 13, 236 (1959).CrossRefGoogle Scholar
  69. 69.
    R. A. Condrate and K. Nakamoto, J. Chem. Phys., 42(7), 2590 (1965).PubMedCrossRefGoogle Scholar
  70. 70.
    C. N. R. Rao, “Chemical Applications of Infrared Spectroscopy,” Academic Press, NY. (1963).Google Scholar
  71. 71.
    R. M. Silverstein and G. C. Bassler, “Spectroscopic Identification of Organic Compounds,” John Wiley, New York, 1981.Google Scholar
  72. 72.
    G. C. Perry and H. S. Stanton, J. Chem. Soc. Dalton Trans., 1446, 2429 (1976); Spectrochim. Acta, 32(A), 1287 (1967).Google Scholar
  73. 73.
    V. Balice and T. Theophanides, J. Inorg. Nucl. Chem., 32, 1237 (1970).CrossRefGoogle Scholar
  74. 74.
    M. Cordes and J. L. Walker, Spectrochim. Acta, 24A, 237 (1968).Google Scholar
  75. 75.
    C. N. C. Drey and J. S. Fruton, Biochemistry, 4, 1 (1965).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Charles E. CarraherJr.
    • 1
  • Melanie M. Williams
    • 1
  1. 1.Department of ChemistryFlorida Atlantic UniversityBoca RatonGermany

Personalised recommendations