Skip to main content

Emerging Developments in Plastic Optical Fibers

  • Chapter
Book cover Frontiers of Polymer Research

Abstract

The bridging element between the transmitter and receiver is generally known as transmission channel. Any improvement in this transmission channel aims at either to improve the transmission fidelity or to increase the data rate or to increase the transmission distance between the two stations. Also, the amount of information transmitted is directly related to the frequency range over which the carrier wave operates, increasing the carrier frequency increases the available transmission band width and consequently provides larger information carrying capacity. Therefore, great interest in communication at optical frequencies (~ 5 × 1014 Hz) was created with the advent of lasers in 1966 and hence the birth of optical fibers (working on the principle of total internal reflection). The first silica optical fiber showed the losses in the transmission signal over 1000dB/km. The attenuation in the signals is caused by absorption, scattering, radiative, distortions, pulse broadening, mode couplings etc1. However, the attractive advantages, (low weight, wider band width, hair size dimensions, immunity to the electric interference, low fiber to fiber cross talks, high degree of data security, etc), over the conventional modes of transmission led researchers to reduce the attenuation in glass fiber around 0.2 dB/km in the 1100 to 1600 nra by early 1980.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerd Keiser, “Optical Fibre Communication,” McGraw-Hill Book Co., Singapore, 1984.

    Google Scholar 

  2. C.T.Troy, “New Spectra, Plastic FO market said set to soar,” Photonics spectra, 24 (7): 38 (1990)

    Google Scholar 

  3. P. Avakian, N.Y. Hsu, P. Meakin and H.L. Synder, “Optical absorption of predeuterated PMMA and influence of Water, ” J. Polym. Soi. Polym. Phys. Ed., 22: 1607 (1984).

    Google Scholar 

  4. T. Kaino, “Ultimate loss limits in plastic optical fibers”, Appl. Opt. 24: 4192 (1985).

    Article  CAS  Google Scholar 

  5. F.L. Sanford, “Polycarbonate: The next optical fiber,” Photonics Spectra, 23 (10): 83 (1989).

    Google Scholar 

  6. S.E. Miller, E.A. Marcatili and T. Li, “Research towards optical fiber transmission system,” Proc. IEEE, 61: 1703 (1973).

    Article  CAS  Google Scholar 

  7. H. Kressel and J.K. Butler, “Semiconductors Lasers and Heterojunction LED’s,” Academic, New York, 1977.

    Google Scholar 

  8. G.H.B. Thompson, “Physics of Semiconductor Laser Devices,” Wiley, New York, 1980.

    Google Scholar 

  9. T. Kaino, “Preparation of plastic optical fibers for near IR region transmission, ”J. Poly. Sci, Part A, Polym. Chem., 25: 37 (1987).

    Article  CAS  Google Scholar 

  10. O. Masaya and S. Koji, “Heat-resistant optical fibers from polycarbonates,” Jpn. Kokai Tokkyo Koho JP 0119, 307 (1989).

    Google Scholar 

  11. F. Hiroshi and K.Toshimasa. Hiroshi and K.Toshimasa, “Clad optical fibers with polycarbonate cores,” Jpn. Kokai Tokkyo Koho JP 0161, 706 (1989).

    Google Scholar 

  12. T. Akira, S. Hisashi, T.Takehisa and W. Noboru, “New plastic optical fiber with polycarbonate core and fluorescence doped fibers for high temperature use,” Proc SPIE-Int. Soc. Opt. Eng. 840: 19 (1987).

    Google Scholar 

  13. M. Shiruyoshi, D.S.Katsuhikoi and U. Yosihiro, “Silicone acrylate polymers for optical fibers clads,” Jpn. Kokai Tokkyo Koho JP 63,243, 110 (1988).

    Google Scholar 

  14. T. Shinichi, K. Shigeki, M. Kazuhiko, Y. Taku and K. Toshio, “Heat resistant cladding material for plastic optical fiber and plastic optical fiber using the same,” Eur. Pat. Appl. EP 307, 164 (1989).

    Google Scholar 

  15. N. Takashi and S. Kazuyoshi, “Heat resistant polycarbonate optical fibers,” Jpn. Kokai Tokkyo Koho JP 6402, 006 (1989).

    Google Scholar 

  16. Theodore L. Parker and Donald J. Parettie, “Vinyl aromatic core polymeric clad optical fiber,” PCT. Int Appl. WO 8705, 117 (1987).

    Google Scholar 

  17. U. Naoya, “Aromatic polyester cores for optical fibers”, Jpn. Kokai Tokkyo Koho JP 0129, 805 (1989).

    Google Scholar 

  18. N. Tsuneyuki, T. Yoshiharu, M. Setsuo and I. Hitoshi, “Manufacture of core sheath optical fibers,” Jpn. Kokai Tokkyo Koho JP 01,13, 102 (1989).

    Google Scholar 

  19. Liu. Hanming and Wong. Zhiyuan, “Preparation of R1 and R2 optical fibers,” Shiyou-Huayong, 17 (11): 714 (1988).

    CAS  Google Scholar 

  20. A. Fumito, F. Hiroshi and H.Hisako, “Flexible diethylene glycol bis (allyl carbonate) copolymer optical fiber, ”Jpn. Kokai Tokkyo Koho JP 63, 146, 004 (1988).

    Google Scholar 

  21. T. Seishiro and S.Heiroku. Seishiro and S.Heiroku, “Optical fibers having methyl methacrylate styrene copolymer cores with low transmission loss,” Jpn. Kokai Tokkyo Koho JP 63,101, 803 (1988).

    Google Scholar 

  22. T. Kaino and Y. Katayuma, “Polymers For Opto-electronics,” Polym. Eng. Sci., 29 (17): 1809 (1989).

    Article  Google Scholar 

  23. T. Kaino, T. Fukuda and T. Matsunaga, “Optical fibers”, Jpn. Kokai Tokkyo Koho JP 61,223,805 and 61,223, 806 (1986).

    Google Scholar 

  24. T.Masayuki, M. Tsuneaki, Y. Shotaro and H. Shoici, “Manufacture of acrylate polymer optical fibers,” Jpn. Kokai Tokkyo Koho JP 63,214, 705 (1988).

    Google Scholar 

  25. T. Masayuki, M. Tsuneaki, Y. Shotaro and H. Schoici, “Manufacture of fluorostyrene-methacrylate copolymer optical fibers,” Jpn. Kokai Tokkyo Koho JP 63, 214, 704 (1988).

    Google Scholar 

  26. T. Masayuki, M. Tsuneaki, Y. Shotaro and H. Schoici, “Optical fibers with deuterated fluoropolymer cores,” Jpn. Kokai Tokkyo Koho JP 63,182, 607 (1988).

    Google Scholar 

  27. T. Masayuki, “Optical fibers with deuterated fluoropolymer cores,” Jpn. Kokai Tokkyo Koho JP 63,182, 608 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nigam, J.K., Malik, A., Bhalla, G.L. (1991). Emerging Developments in Plastic Optical Fibers. In: Prasad, P.N., Nigam, J.K. (eds) Frontiers of Polymer Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3856-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3856-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6721-5

  • Online ISBN: 978-1-4615-3856-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics