Advertisement

Third-Order Optical Nonlinearity and Conductivity of 2, 5-Disubstituted Poly(1, 4-Phenylene Vinylene) Composites with SOL-GEL Processed Inorganic Glasses

  • K.-S. Lee
  • C. J. Wung
  • P. N. Prasad
  • C. K. Park
  • J. C. Kim
  • J.-I. Jin
  • H.-K. Shim

Abstract

Composites of poly(1,4-phenylene vinylene) (PPV) and some of its derivatives such as poly(2-bromo-5-methoxy phenylene vinylene) (BrMPPV) and poly(2-buthoxy-5-methoxy phenylene vinylene) (BuMPPV) with sol-gel processed silica and V2O5 glasses were prepared as materials for optical waveguide and photonics applications. Optical nonlinearities of the pure polymers and the polymer/sol-gel composites were measured by the degenerate four-wave mixing technique. The x (3) values are ~ 3 × 10−10,~ 9 × 10−10, and ~ 10−9 esu for the PPV, BrMPPV and BrMPPV polymers, respectively. The composites exhibited the x (3) value scaled by the number density, but were of enhanced optical quality for waveguide application. The maximum conductivity of the PPV/sol-gel film doped with AsF5 was 0.023 S/cm.

Keywords

Pure Polymer Precursor Polymer Inorganic Glass Phenylene Vinylene Good Optical Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.N. Prasad and D.J. Williams “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, Wiley, New York (1991).Google Scholar
  2. 2.
    R. Burzynski, D.N. Rao, and P.N. Prasad, unpublished result.Google Scholar
  3. 3.
    D.R. Gagnon, J.D. Capistran, F.E. Karasz, R.W. Lenz and S. Antoun, Polymer, 28, 567 (1987).CrossRefGoogle Scholar
  4. 4.
    Chi-Kyun Park, Hong-Ku Shim, and Jung-I1 Jin, unpublished results.Google Scholar
  5. 5.
    J.I. Jin, C.K. Park, H.K. Shim, and Y.W. Park, J. Chem. Soc. Chem. Commun. no. 17, 1205 (1989).CrossRefGoogle Scholar
  6. 6.
    C.J. Wung, Y. Pang, P.N. Prasad, and F.E. Karasz, Polymer, 32, 605, 1991.CrossRefGoogle Scholar
  7. 7.
    M. Yamane, S. Aso, and T. Sakaino, J. Mater. Sci., 13, 865 (1978). 8.CrossRefGoogle Scholar
  8. 8.
    G. Carturan, V. Gottardi, and M. Graziani, J. Non-Crystalline Solids 29, 41, (1978).CrossRefGoogle Scholar
  9. 9.
    N.P. Xuan, J.L. Ferrier, J. Gazengel, and G. Rivorie, Opt. Commun. 51, 433 (1984).CrossRefGoogle Scholar
  10. 10.
    B.P. Singh, P.N. Prasad, and F.E. Karasz, Polymer, 29, 1940, (1988).CrossRefGoogle Scholar
  11. 11.
    “Nonlinear Optical and Electroactive Polymers” Eds. P.N. Prasad and D.R. Ulrich, Plenum Press (New York, 1988 ).Google Scholar
  12. 12.
    C.C. Han, R.W. Lenz, and F.E. Karasz, Polym. Commun., 28, 26, (1987).Google Scholar
  13. 13.
    K.Y. Jen, L.W. Shacklettle, and R. Elsenbaumer, Synth. Met., 22, 179, (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • K.-S. Lee
    • 1
  • C. J. Wung
    • 1
  • P. N. Prasad
    • 1
  • C. K. Park
    • 2
  • J. C. Kim
    • 2
  • J.-I. Jin
    • 2
  • H.-K. Shim
    • 3
  1. 1.Photonics Research Laboratory, Dept. of ChemistryState University of New York at BuffaloBuffaloUSA
  2. 2.Dept. of ChemistryKorea UniversitySeoulKorea
  3. 3.Dept. of ChemistryKorea Advanced Institute of Science and TechnologyTaejeonKorea

Personalised recommendations