Biological Consequences of Alterations in the Physical Properties of Membranes

  • Richard M. Epand


Membranes serve important functions for cell organization and for the transduction of signals from the external environment to the cell interior. These functions are generally determined by specific molecules in the membrane such as receptors and membrane bound enzymes. The functioning of these receptors and enzymes are modulated by the nature of their physical environment, i.e. the efficiency of signal transduction and the activity of membrane-bound enzymes will be affected by the nature of the membrane surrounding the specific functional sites. In addition, some properties of membranes such as permeability or membrane fusion may not be absolutely dependent on the presence of specific proteins but may also occur by non-specific mechanisms. In this review, we will focus on the modulation of viral fusion, protein kinase C activity and insulin signalling in adipocytes as examples of membrane functions that are modulated by the physical properties of the membrane. An earlier review of our work in this area has recently appeared (Epand, 1990a).


Membrane Fusion Model Membrane Myoblast Fusion Bovine Immunodeficiency Virus Cholesterol Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiello, L. P., Wessling-Resnick, M., and Pilch, P. F., 1986, Dipeptide metalloendoprotease substrates are glucose transport inhibitors and membrane structure perturbants, Biochemistry 25:3944.PubMedCrossRefGoogle Scholar
  2. Baxter, D. A., Johnston, D., and Strittmatter, W. J., 1983, Protease inhibitors implicate metalloendoprotease in synaptic transmission at the mammalian neuromuscular junction. Proc. Natl. Acad. Sci. USA, 80:4174.PubMedCrossRefGoogle Scholar
  3. Brasseur, R., Vandenbranden, M., Cornet, B., Burny, A., Ruysschaert, J.-M., 1990, Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins, Biochim. Biophys. Acta 1029:267.PubMedCrossRefGoogle Scholar
  4. Cheetham, J. J., and Epand, R. M., 1987, Comparison of the interaction of the antiviral chemotherapeutic agents amantadine and tromantadine with model phospholipid membranes Bioscience Reports 7:225.PubMedCrossRefGoogle Scholar
  5. Cheetham, J. J., Epand, R. M., Andrews, M., and Flanagan, T. D., 1990a, Cholesterol sulfate inhibits the fusion of Sendai Virus to biological and model membranes, J. Biol. Chem 265:12404.Google Scholar
  6. Cheetham, J. J., Chen, R. J. B., and Epand, R. M., 1990b, Interaction of calcium and cholesterol sulphate induces membrane destabilization and fusion: Implications for the acrosome reaction, Biochim. Biophys. Acta 1024:367.CrossRefGoogle Scholar
  7. Chong, P. L.-G., 1988, Effects of hydrostatic pressure on the location of Prodan in lipid bilayers and cellular membranes, Biochemistry 27:399.PubMedCrossRefGoogle Scholar
  8. Couch, C. B., and Strittmatter, W. J., 1983, Rat myoblast fusion requires metalloendoprotease activity, Cell, 32:257.PubMedCrossRefGoogle Scholar
  9. Cullis, P. R., Hope, M. L., and Tilcock, C. P., 1986, Lipid polymorphism and the roles of lipids in membranes, Chem. Phys. Lipids 40:127.PubMedCrossRefGoogle Scholar
  10. Epand, R. M., 1986, Virus replication inhibitory peptide inhibits the conversion of phospholipid bilayers to the hexagonal phase, Bioscience Reports 6:647.PubMedCrossRefGoogle Scholar
  11. Epand, R. M., 1987, Properties determining whether substances will be activators or inhibitors of protein kinase C, Chem. Biol. Interac. 63:239.CrossRefGoogle Scholar
  12. Epand, R. M., 1990a, Relationship of phospholipid hexagonal phases to biological phenomena, Biochem. Cell Biol. 68:17.CrossRefGoogle Scholar
  13. Epand, R. M., 1990b, Hydrogen bonding and the thermotropic transitions of phosphatidylethanolamines, Chem. Phys. Lipids 52:227.CrossRefGoogle Scholar
  14. Epand, R. M., and Lester, D. S., 1990, The role of membrane biophysical properties in the regulation of protein kinase C activity, Trends in Pharm. Sci. 11:317.CrossRefGoogle Scholar
  15. Epand, R. M., and Leon, B. T. C., 1991, Hexagonal phase forming propensity detected in phospholipid bilayers with a fluorescence probe, Biochemistry submitted for publication.Google Scholar
  16. Epand, R. M., Epand, R. F., and McKenzie, R. C., 1987a, Effects of viral chemotherapeutic agents on membrane properties, J. Biol. Chem 262:1526.Google Scholar
  17. Epand, R. M., Lobl, T. J., and Renis, H. E., 1987b, Bilayer stabilizing peptides and the inhibition of viral infection: Antimeasles activity of carbobenzoxy-Ser-Leu-amide, Bioscience Reports 7:745.CrossRefGoogle Scholar
  18. Epand, R. M., Epand, R. F., Anantharamaiah, G. M., and Segrest, J. P., 1991a, Apolipoprotein A-I is a potent inhibitor of hexagonal phase formation, Biochim. Biophys. Acta submitted for publication.Google Scholar
  19. Epand, R. M., Epand, R. F., Leon, B. T.-C., Menger, F. M., and Kuo, J. F., 1991b, Evidence for the regulation of the activity of protein kinase C through changes in membrane properties, Bioscience Reports submitted for publication.Google Scholar
  20. Epand, R. M., Stafford, A. R., and Debanne, M. T., 1991c, The action of insulin in rat adipocytes and membrane properties, Biochemistry in press.Google Scholar
  21. Fenske, D. B., Jarrell, H. C., Guo, Y., and Hui, S. W., 1990, Effect of unsaturated phosphatidylethanolamine on the chain order profile of bilayers at the onset of the hexagonal phase transition. A 2H NMR study, Biochemistry 29:11222.PubMedCrossRefGoogle Scholar
  22. Gui, X. E., Ho, M., and Camp, P. E., 1982, Effect of cyclosporin A on murine natural killer cells, Infect. Immun. 36:1123.PubMedGoogle Scholar
  23. Gruner, S. M., 1985, Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids, Proc. Natl. Acad, Sci. USA, 82:3665.CrossRefGoogle Scholar
  24. Hannun, Y. A., Loomis, C. R., and Bell, R. M., 1986, Protein kinase C activation in mixed micelles: Mechanistic implications of phospholipid, diacylglycerol and calcium dependencies, J. Biol. Chem. 261:7184.PubMedGoogle Scholar
  25. Hui, S.-W., and Sen, A., 1989, Effects of lipid packing on polymorphic phase behaviour and membrane properties, Proc. Natl. Acad. Sci. USA 86:5825.PubMedCrossRefGoogle Scholar
  26. Ickes, D. E., Venetta, T. M., Phonphok, Y., and Rosenthal, K. S., 1990, Tromantadine inhibits a late step in herpes simplex virus type 1 replication and syncytium formation, Antiviral Research 14:75.PubMedCrossRefGoogle Scholar
  27. Karnovsky, M. J., Kleinfield, A. M., Hoover, R. L., and Klausner, R. D., 1982, The concept of lipid domains in membranes, J. Cell Biol. 94:1.PubMedCrossRefGoogle Scholar
  28. Kelsey, D. R., Flanagan, T. D., Young, J., and Yeagle, P. L., 1990, Peptide inhibitors of enveloped virus infection inhibit phospholipid vesicle fusion and Sendai virus fusion with phospholipid vesicles, J. Biol. Chem. 265:12178.PubMedGoogle Scholar
  29. Kimura, Y., and Ikegami, A., 1985, Local dielectric properties around polar region of lipid bilayer membranes, J. Membrane Biol 85:225.CrossRefGoogle Scholar
  30. Lee, M.-H., and Bell, R. M., 1989, Phospholipid functional groups involved in protein kinase C activation, phorbol ester binding, and binding to mixed micelles, J. Biol. Chem. 264:14797.PubMedGoogle Scholar
  31. Lobl, T. L., Renis, H. E., Epand, R. M., Maggiora, L. L., and Wathen, M. W., 1988, Peptides as potential virus inhibitors: Synthesis and bioassay of five respiratory syncytial virus peptide analogs with antimeasles activity, Int. J. Peptide Protein Res. 32:326.CrossRefGoogle Scholar
  32. McKenzie, R. C., Epand, R. M., and Johnson, D. C., 1987, Cyclosporin A inhibits herpes simplex virus-induced cell fusion but not virus penetration into cells, Virology 159:1.PubMedCrossRefGoogle Scholar
  33. Molleyres, L. P., and Rando, R. R., 1988, Structural studies on the diglyceride-mediated activation of protein kinase C, J. Biol. Chem. 263:14832.PubMedGoogle Scholar
  34. Mundy, D. I., and Strittmatter, W. J., 1985, Requirement for metalloendoprotease in exocytosis: Evidence in mast cells and adrenal chromaffin cells, Cell, 40:645.PubMedCrossRefGoogle Scholar
  35. Nakamura, H., Kishi, Y., Pajares, M. A., and Rando, R. R., 1989, Structural basis of protein kinase C activation by tumor promoters, Proc. Natl. Acad. Sci. USA 86:9672.PubMedCrossRefGoogle Scholar
  36. Naydenova, S., Lalchev, Z., Petrov, A. G., and Exerowa, D., 1990, Pure and mixed lipid black foam films as models of membrane fusion, Eur. Biophys. J. 17:343.PubMedCrossRefGoogle Scholar
  37. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233:305.PubMedCrossRefGoogle Scholar
  38. Ohki, S., and Arnold, K., 1990, Surface dielectric constant, surface hydrophobicity and membrane fusion, J. Membrane Biol. 114:195.CrossRefGoogle Scholar
  39. Owens, R. J., Anantharamiah, G. M. Kahlon, J. B., Srinivas, R. V., Compans, R. W., and Segrest, J. P., 1990, Apolipoprotein A-I and its amphipathic helix peptide analogues inhibit human immunodeficiency virus-induced syncytium formation, J. Clin. Invest. 86:1142.PubMedCrossRefGoogle Scholar
  40. Rando, R. R., 1988, Regulation of protein kinase C activity by lipids, FASEB J. 2:2348.PubMedGoogle Scholar
  41. Richardson, C. D., Scheid, A., Choppin, P. W., 1980, Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acids similar to those at the N-termini of the Fl or HA2 viral polypeptides, Virology 105:204.CrossRefGoogle Scholar
  42. Rosenthal, K. S., Sokol, M. S., Ingram, R. L., Subramanian, R., and Fort, R. C., 1982, Tromantadine: Inhibitor of early and late events in Herpes Simplex Virus replication. Antimicrobial Agents and Chemotherapy 22:1031.PubMedCrossRefGoogle Scholar
  43. Seddon, J. M., 1990, Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids, Biochim. Biophys. Acta 1031:1.PubMedCrossRefGoogle Scholar
  44. Siegel, D. P., Burns, J. L., Chestnut, M. H., and Talmon, Y., 1989, Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy, Biophys. J. 56:161.PubMedCrossRefGoogle Scholar
  45. Sommer, A., Paltauf, F., and Hermetter, A., 1990, Dipolar solvent relaxation on a nonosecond time scale in ether phospholipid membranes as determined by multifrequency phase and modulation fluorometry, Biochemistry 29:11134.PubMedCrossRefGoogle Scholar
  46. Srinivas, R. V., Birkedal, B., Owens, R. J., Anantharamaiah, G. M., Segrest, J. P., and Compans, R. W., 1990, Antiviral effects of apolipoprotein A-I and its synthetic amphipathic analogs, Virology 176:48.PubMedCrossRefGoogle Scholar
  47. Strous, G. J., van Kerkhof, P., Dekker, J., and Schwartz, A. L., 1988, Metalloendoprotease inhibitors block protein synthesis, intracellular transport, and endocytosis in hepatoma cells, J. Biol. Chem. 263:18197.PubMedGoogle Scholar
  48. Watarai, S., Onuma, M., Yamamoto, S. and Yasuda, T., 1990, Inhibitory effect of liposomes containing sulfatide or cholesterol sulfate on syncytium formation induced by bovine immunodeficiency virus-infected cells, J. Biochem. 108:507.PubMedGoogle Scholar
  49. Weber, G., and Farris, F. J., 1979, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-dimethylaminonaphthalene, Biochemistry 18:3075.PubMedCrossRefGoogle Scholar
  50. Wilschut, J., and Hoekstra, D., 1991, “Membrane Fusion”, Marcel Dekker, New York.Google Scholar
  51. Yeagle, P. L., 1989, Lipid regulation of cell membrane structure and function, FASEB J. 3:1833.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Richard M. Epand
    • 1
  1. 1.Department of BiochemistryMcMaster University Health Sciences CentreHamiltonCanada

Personalised recommendations