Skip to main content

On the Mechanism of Membrane Fusion: Use of Synthetic Surfactant Vesicles as a Novel Model System

  • Chapter

Abstract

The structural and physical properties of membranes affect many functional and dynamic processes that take place in and between membranes. Therefore, selective modulation of these properties may reveal fundamental insight at the molecular level as to how a certain function, involving a membrane, is accomplished mechanistically. To gain such an insight, the model of choice may be particularly relevant, as one membrane model may be more amenable and susceptible to modulation than another. This appears particularly true in case of studies aimed at understanding and revealing the mechanism of membrane fusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, K., Herrmann, A., Pratsch, L., and Gawrisch, K., 1985, The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure, Biochim. Biophys. Acta, 815:515.

    Article  PubMed  CAS  Google Scholar 

  • Ataman, M., 1987, Properties of aqueous salt solutions of poly(ethylene oxide). Cloud points, θ temperatures, Coll. & Polym. Sci., 265:19.

    Article  CAS  Google Scholar 

  • Blumenthal, R., 1988, Membrane fusion, Current Top. in Membr. and Transp. 29:203.

    Article  Google Scholar 

  • Boni, L.T., Stewart, T.P., Aiderfer, J.L., and Hui, S.W., 1981, Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers, J. Membr. Biol., 62:71.

    Article  PubMed  CAS  Google Scholar 

  • Boni, L.T., Stewart, T.P., and Hui, S.W., 1984, Alterations in phospholipid polymorphism by polythylene glycol, J. Membr. Biol., 80:91.

    Article  PubMed  CAS  Google Scholar 

  • Boucher, E.A., and Hines, P.M., 1978, Properties of aqueous salt solutions of poly(ethylene oxide): Thermodynamic quantities based on viscosity and other measurements, J. Polym. Sci. Polym. Phys. Ed., 16:501.

    Article  CAS  Google Scholar 

  • Carmona-Ribeiro, A.M., Yoshida, L.S., and Chaimovich, H., 1985, Salt effects on the stability of dioctadecyldimethylammoniumchloride and sodium dihexadecylphosphate vesicles, J. Phys. Chem., 89:2928.

    Article  CAS  Google Scholar 

  • Cevs, G., Zeks, B., and Podgornik, R., 1981, The undulations of hydrated phospholipid multibilayers may be due to water-mediated bilayer-bilayer interactions, Chem. Phys. Letters, 84:209.

    Article  Google Scholar 

  • Düzgünes, N., Goldstein, J.A., Friend, D.S., and Felgner, P.L., 1989, Fusion of liposomes containing a novel cationic lipid, N2,3-(dioleoyloxy)propyl N,N,N,trimethylammonium: Induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles, Biochemistry, 28:9179.

    Article  PubMed  Google Scholar 

  • Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., and Danielsen, M., 1987, Lipofection-A highly efficient lipid mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 84:7413.

    Article  PubMed  CAS  Google Scholar 

  • Felgner, P.L., and Ringold, G.M., 1989, Cationic liposome-mediated transfection, Nature, 337:387.

    Article  PubMed  CAS  Google Scholar 

  • Fendler, J.H., 1982, Membrane mimetic chemistry, John Wiley, USA.

    Google Scholar 

  • Florin, E., Kjellander, R., and Eriksson, J.C., 1984, Salt effect on the cloud point of the poly(ethylene oxide) + water system, J. Chem. Soc., Faraday Trans. 1, 80:2889.

    Google Scholar 

  • Fonteijn, T.A.A., Hoekstra, D., and Engberts, J.B.F.N., 1990, Specific asymmetric fusion between artificial and biological model membranes, J. Am. Chem. Soc., 112:8870.

    Article  Google Scholar 

  • Fonteijn, T.A.A., Engberts, J.B.F.N., and Hoekstra, D., 1991, Asymmetric fusion between phospholipid vesicles and vesicles formed from synthetic di-n-alkylphosphates, Biochemistry, in press.

    Google Scholar 

  • Gruen, D.W.R., and Marcelja, S., 1983, Spatially varying polarization in water, J. Chem. Soc., Faraday Trans. 2, 79:225.

    Google Scholar 

  • Helfrich, W., 1975, Out-of-plane fluctuations of lipid bilayers, Z. Naturforsch. C, 30:841.

    PubMed  CAS  Google Scholar 

  • Hoekstra, D., 1982, Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion, Biochemistry, 21:2833.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., and Kok, J.W., 1989, Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes, Bioscience Reports, 9:273.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., and Wilschut, J., 1989, Membrane fusion of artificial and biological membranes. Role of local membrane dehydration, in: “Water Transport in Biological Membranes”, G. Benga, ed., CRC Press, Boca Raton, pp. 143.

    Google Scholar 

  • Hoekstra, D., Klappe, K., Hoff, H., and Nir, S., 1989, Mechanism of fusion of Sendai virus: Role of hydrophobic interactions and mobility constraints of viral membrane proteins. Effects of poly(ethylene)glycol, J. Biol. Chem., 264:6786.

    PubMed  CAS  Google Scholar 

  • Hoekstra, D., 1990, Membrane fusion of enveloped viruses: Especially a matter of proteins, J. Bioenerg. and Biomembr., 22:121.

    Article  CAS  Google Scholar 

  • Israelachvili, J.N., Marcelja, S., and Horn, R.G., 1980, Physical principles of membrane organization, Q. Rev. Biophys., 13:121.

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili, J.N., and Sornette, D., 1985, The interdependence of intra-aggregate and inter-aggregate forces, J. de Physique, 46:2125.

    Article  Google Scholar 

  • Israelachvili, J.N., and Wennerström, H., 1990, Hydration or steric forces between amphiphilic surfaces?, Langmuir, 6:873.

    Article  CAS  Google Scholar 

  • Jönsson, B., and Wennerström, H., 1983, Image-charge forces in phospholipid bilayer systems, J. Chem. Soc., Faraday Trans. 2, 79:19.

    Google Scholar 

  • Klibanov, A.L., Maruyama, K., Torchilin, V.P., and Huang, L., 1990, Amphipathic polyethylene glycols effectively prolong the circulation time of liposomes, FEBS Lett., 268:235.

    Article  PubMed  CAS  Google Scholar 

  • Kunitake, T., and Okahata, Y., 1977, A totally synthetic bilayer membrane, J. Am. Chem. Soc., 99:3860.

    Article  CAS  Google Scholar 

  • Kurland, R.J., Hammoudah, M., Nir, S., and Papahadjopoulos, D., 1979, Binding of Ca2+ and Mg2+ to phosphatidylserine vesicles: Differenteffects on P-31NMR shifts and relaxation times, Biochem. Biophys. Res. Commun., 88:927.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, R.I., 1986, Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose, Biochemistry, 24:4058.

    Article  Google Scholar 

  • Marcelja, S., and Radic, N., 1976, Repulsion of interfaces due to boundary water, Chem. Phys. Letters, 42:129.

    Article  CAS  Google Scholar 

  • Marra, J., and Israelachvili, J., 1985, Direct measurement of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions, Biochemistry, 24:4608.

    Article  PubMed  CAS  Google Scholar 

  • Novick, S.L., and Hoekstra, D., 1990, Significance of hydrophobic interactions in membrane fusion of enveloped viruses. A comparison with model membranes, Springer Series in Biophysics, 5:237.

    Article  CAS  Google Scholar 

  • Parente, R.A., and Lentz, B.R., 1986, Rate and extent of poly(ethyleneglycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing, Biochemistry 25:6678.

    Article  PubMed  CAS  Google Scholar 

  • Pinnaduwage, P., Schmitt, L., and Huang, L., 1989, Use of a quartenary ammonium detergent in liposome mediated DNA transfection of mouse L-cells, Biochim. Biophys. Acta, 985:33.

    Article  PubMed  CAS  Google Scholar 

  • Pullman, B., Pullman, A., Berthod, H., and Gresh, N., 1975, Quantum-mechanical studies of environmental effects on biomolecules. VI Abinitio studies on the hydration scheme of the phosphate group, Theoret. Chim. Acta, 40:93.

    Article  CAS  Google Scholar 

  • Rand, R.P., Fuller, N., Parsegian, V.A., and Ran, D.C., 1988, Variation in hydration forces between neutral phospholipid bilayers: Evidence for hydration attraction, Biochemistry, 27:7711.

    Article  PubMed  CAS  Google Scholar 

  • Rand, R.P., and Parsegian, V.A., 1989, Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta, 988:351.

    Article  CAS  Google Scholar 

  • Rupert, L.A.M., Hoekstra, D., and Engberts, J.B.F.N., 1985, Fusogenic behaviour of didodecyldimethylammonium bromide bilayer vesicles, J. Am. Chem. Soc., 107:2628.

    Article  CAS  Google Scholar 

  • Rupert, L.A.M., Engberts, J.B.F.N., and Hoekstra, 1986, Role of membrane hydration and membrane fluidity in the mechanism of anion-induced fusion of didodecyldimethylammonium bromide vesicles, J. Am. Chem. Soc., 1081:3920.

    Google Scholar 

  • Rupert, L.A.M., Hoekstra, D., and Engberts, J.B.F.N., 1987, Ca2+-mediated fusion of didodecylphosphate vesicles, J. Colloid Interface Sci., 120:125.

    Article  CAS  Google Scholar 

  • Rupert, L.A.M., Van Breemen, J.F.L., Van Bruggen, E.F.J., Engberts, J.B.F.N., and Hoekstra, D., 1987a, Calcium-induced fusion of didodecylphosphate vesicles: The lamellar to hexagonal II (HII) phase transition, J. Membr. Biol., 95:255.

    Article  CAS  Google Scholar 

  • Rupert, L.A.M., Engberts, J.B.F.N., d Hoekstra, D., 1988, Effect of poly(ethylene glycol) on the Ca2+ -induced fusion of didodecylphosphate vesicles, Biochemistry, 27:8232.

    Article  PubMed  CAS  Google Scholar 

  • Rupert, L.A.M., Van Breemen, J.F.L., Hoekstra, D., and Engberts, J.B.F.N., 1988a, pH-Dependent fusion of didodecylphosphate vesicles. Role of hydrogen-bond formation and membrane fluidity, J. Phys. Chem., 92:4416.

    Article  CAS  Google Scholar 

  • Saeki, S., Kuwahara, N., Nakata, M., and Kaneko, M., 1976, Upper and lower critical solution temperatures in poly(ethylene glycol) solutions, Polymer, 17:685.

    Article  CAS  Google Scholar 

  • Siegel, D.P., 1986, Inverted micellar intermediates between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the Lx -HII phase transitions, Biophys. J., 49:1155.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D.P., 1986a, Inverted micellar intermediates and the transition between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion, Biophys. J., 49:1171.

    Article  CAS  Google Scholar 

  • Sornette, D., and Ostrowsky, N., 1986, Importance of membrane fluidity on bilayer interactions, J. Chem. Phys., 84:4062.

    Article  CAS  Google Scholar 

  • Struck, D.K., Hoekstra, D., and Pagano, R.E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry, 20:4093.

    Article  PubMed  CAS  Google Scholar 

  • Tauford, D., 1980, The hydrophobic effect, Wiley-Interscience, New York.

    Google Scholar 

  • Wagenaar, A., Rupert, L.A.M., Engberts, J.B.F.N., and Hoekstra, D., 1989, Synthesis and vesicle formation of identical-and mixed-chain di-n-alkyl phosphate amphiphiles, J. Org. Chem., 54:2638.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fonteijn, T.A.A., Engberts, J.B.F.N., Hoekstra, D. (1991). On the Mechanism of Membrane Fusion: Use of Synthetic Surfactant Vesicles as a Novel Model System. In: Ohki, S. (eds) Cell and Model Membrane Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3854-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3854-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6720-8

  • Online ISBN: 978-1-4615-3854-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics