Advertisement

The Superconductor Insulator Superconductor Mixer Receiver — A Review

  • Raymond Blundell
  • Dag Winkler

Abstract

It is now about thirty years since Dayem and Martin1 observed a step structure in the current-voltage (I–V) curve of a superconductor-insulator-superconductor (SIS) tunnel junction when subjected to microwave radiation at 38 GHz. This step structure was later explained by Tien and Gordon2 in terms of the photon assisted tunneling of single electrons across the tunnel barrier. Several years later, Tucker developed a full quantum mechanical treatment of heterodyne mixing in the SIS tunnel junction.3 His theory was used to predict a number of interesting features. In particular, it predicted quantum limited mixer noise and the possibility of mixer conversion gain,4 not possible through the classical treatment of mixing, and hence the possibility of extremely low-noise receivers. It also predicted that the local oscillator power required for optimum noise performance should be several orders of magnitude lower than that required to correctly operate the Schottky diode mixers usually employed for heterodyne mixing. A complete review of mixing with superconducting tunnel junctions has been given by Tucker and Feldman.5

Keywords

Tunnel Junction Receiver Noise Microwave Theory Tech Superconducting Tunnel Junction Superconductor Insulator Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Dayem and R. J. Martin, Quantum interaction of microwave radiation with tunneling between superconductors, Phys. Rev. Lett., 8: 246 (1962).ADSCrossRefGoogle Scholar
  2. 2.
    P. K. Tien and J. P. Gordon, Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films, Phys. Rev., 129: 647 (1963).ADSCrossRefGoogle Scholar
  3. 3.
    J. R. Tucker, Quantum limited detection in tunnel junction mixers, IEEE J. Quantum Electron. QE-15: 1234 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    J. R. Tucker, Predicted conversion gain in superconductor-insulator-superconductor quasiparticle mixers, Appl. Phys. Lett. 36: 477 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    J. R. Tucker and M. J. Feldman, Quantum detection at millimeter wavelengths, Rev. Mod. Phvs. 57: 1055 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Penzias and R. W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s, Astrophvs. J., 142: 419 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    L. E. Snyder, D. Bhul, B. Zuckerman and P. Palmer, Microwave detection of interstellar formaldehyde, Phys. Rev. Lett. 22: 679 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton and W. J. Welch, Detection of NH3 molecules in the interstellar medium by their microwave emission, Phvs. Rev. Lett. 21: 1701 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton and W. J. Welch, Detection of water in interstellar regions by its microwave radiation, Nature. 221: 626 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    R. W. Wilson, K. B. Jefferts and A. A. Penzias, Carbon monoxide in the Orion nebula, Astrophvs. J. 161: L43 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    K. B. Jefferts, A. A. Penzias and R. W. Wilson, Observation of the CN radical in the Orion nebula and W51, Astrophvs. J., 161: L87 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    R. H. Dicke, The measurement of thermal radiation at microwave frequencies, Rev. Sci. Instr., 17: 268 (1946).ADSCrossRefGoogle Scholar
  13. 13.
    R. N. Martin, P. A. Strittmatter, J. H. Black, W. F. Hoffmann, C. J. Hogan, C. J. Lada and W. L. Peters, in: “A Proposal to the National Science Foundation for partial funding of the Submillimeter Telescope,” University of Arizona, Steward Observatory, 8 (1989).Google Scholar
  14. 14.
    P. L. Richards T. M. Shen, R. E. Harris, and F. L. Lloyd, Quasiparticle heterodyne mixing in SIS tunnel junctions, Appl. Phys. Lett., 34: 345 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    G. J. Dolan, T. G. Phillips, and D. P. Woody, Low-noise 115-GHz mixing in superconducting oxide-barrier tunnel junctions, Appl. Phys. Lett., 34: 347 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    S. Rudner and T. Claeson, Arrays of superconducting tunnel junctions as low-noise 10-GHz mixers, Appl. Phvs. Lett., 34: 711 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    G. J. Dolan, R. A. Linke, T. C. L. G. Sollner, D. P. Woody, and T. G. Phillips, Superconducting tunnel junctions as mixers at 115 GHz, IEEE Trans. Microwave Theory Tech., MTT-29: 87 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    S. Rudner, M. J. Feldman, E. Kollberg, and T. Claeson, Superconductor insulator superconductor mixing with arrays at millimeter-wave frequencies, J. Appl. Phys., 52: 6366 (1981).ADSCrossRefGoogle Scholar
  19. 19.
    L. Olsson, S. Rudner, E. Kollberg, and C. O. Lindström, A low noise SIS array receiver for radioastronomical applications in the 35-50 GHz band, Int. J. Infrared and Millimeter Waves. 4: 847 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    D. P. Woody, R. E. Miller and M. J. Wengler, 85–115 GHz receivers for radio-astronomy, IEEE Trans. Microwave Theory Tech., MTT-33: 90 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    M. J. Feldman, S.-K. Pan and A. R. Kerr, SIS mixer analysis using a scale model, IEEE Trans. Magn., MAG-19: 494 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    A. R. Kerr, S.-K. Pan, and M. J. Feldman, Infinite available gain in a 115 GHz SIS mixer, Phvsica. 108B: 1369 (1981).ADSGoogle Scholar
  23. 23.
    W. R. McGrath, P. L. Richards, A. D. Smith, H. van Kempen, R. A. Batchelor, D. E. Prober, and P. Santhanam, Large gain, negative resistance, and oscillations in superconducting quasiparticle heterodyne mixers, Appl. Phys. Lett., 39: 655 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    L. R. D’Addario, An SIS mixer for 90–120 GHz with gain and wide bandwidth, Int. J. Infrared Millimeter Waves. 5: 1419–1442(1984).ADSCrossRefGoogle Scholar
  25. 25.
    A. V. Räisänen, D. G. Crété, P. L. Richards, and F. L. Lloyd, Low noise SIS mixer with gain for 80–115 GHz, in: “Proceedings of an ESA Workshop on a Space-Borne Sub-Millimetre Astronomy Mission,” N. Longdon, ESA Publications Division ESTEC, Noordwijk, Segovia, Spain, 225 (1986).Google Scholar
  26. 26.
    A. R. Kerr, S.-K. Pan, S. Whiteley, M. Radparvar, and S. Faris, A fully integrated SIS mixer for 75–110 GHz, IEEE Microwave Theory Tech., MTT-S Digest: 851 (1990).Google Scholar
  27. 27.
    C. A. Mears, Quing Hu, P. L. Richards, A. H. Worsham, D. E. Prober and A. V. Räisänen, Quantum limited quasiparticle mixers at 100 GHz, submitted to IEEE Trans. Magn., Sept. (1990).Google Scholar
  28. 28.
    An. B. Ermakov, V. P. Koshlets, S. A. Kovtonyuk and S. V. Shitov, Parallel biased SIS arrays for mm wave mixers: main ideas and experimental verification, submitted to IEEE Trans. Magn., Sept. (1990).Google Scholar
  29. 29.
    R. Blundell, K. H. Gundlach, and E. J. Blum, Practical low-noise quasiparticle receiver for 80–100 GHz, Electron. Lett., 19: 498 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    S.-K. Pan, M. J. Feldman, A. R. Kerr, and P. Timbie, A low-noise 115 GHz receiver using superconducting tunnel junctions, Appl. Phys. Lett., 43: 786 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    E. C. Sutton, A superconducting tunnel junction receiver for 230 GHz, IEEE Trans. Microwave Theory Tech., MTT-31:589 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    R. Blundell, K. H. Gundlach, E. J. Blum, J. Ibruegger and H. Hein, IRAM SIS receivers, im “Int. Symp. on Millimeter and Submillimeter Wave Radio Astronomy”, U.R.S.I, Granada (1984).Google Scholar
  33. 33.
    K. H. Gundlach, R. Blundell, J. Ibruegger, and E. J. Blum, SIS quasiparticle mixer receiver for radio-astronomy applications, p. 987, in: “SQUID′85”, H. D. Hahlbohm and H. Lübig, Walter de Gruyter & Co., Berlin (1985).Google Scholar
  34. 34.
    D. Winkler, A. H. Worsham, N. G. Ugras, D. E. Prober, N. R. Erikson and P. F. Goldsmith, A 75–110 GHz SIS mixer with integrated tuning and coupled gain, im “Nonlinear Superconductive Electronics and Josephson Devices,” N. F. Pedersen, M. Russo, A. Davidson, G. Constabile and S. Pagano, eds., Plenum, London (These proceedings).Google Scholar
  35. 35.
    J. Blondel, R. Blundell, M. C. Carter and J. Y. Chenu, unpublished results (1988).Google Scholar
  36. 36.
    A. R. Kerr and S.-K. Pan, Some recent developments in the design of SIS mixers, p. 363, in: “Proc. First Int. Symp. on Space Terahertz Tech.”, Michigan (1990).Google Scholar
  37. 37.
    H. Ogawa, A. Mizuno, H. Hoko, H. Ishikawa and Y. Fukui, A 110 GHz SIS receiver for radioastronomy, Int. J. Infrared and Millimeter Waves. 11: 717 (1990).ADSCrossRefGoogle Scholar
  38. 38.
    S.-K. Pan, A. R. Kerr, M. J. Feldman, A. W. Kleinsasser, J. W. Stasiak, R. L. Sandstrom, and W. J. Gallagher, An 85–116 GHz receiver using inductively shunted edge junctions, IEEE Trans. Microwave Theory Tech., MTT-37: 580 (1989).ADSCrossRefGoogle Scholar
  39. 39.
    R. Blundell, J. Ibrügger, K. H. Gundlach and E. J. Blum, Low-noise 140-170 GHz heterodyne receiver using quasiparticle tunnel junctions, Electron. Lett. 20:476 (1984).ADSCrossRefGoogle Scholar
  40. 40.
    J. Ibrügger, M. C. Carter and R. Blundell, A low-noise broadband 125–175 GHz SIS receiver for radioastronomy observations, Int. J. Infrared and Millimeter Waves. 8: 1573 (1987).CrossRefGoogle Scholar
  41. 41.
    B. Vowinkel, K. Eigler, W. Hilberath, K. Jacobs and P. Müller, 125-170 GHz SIS receiver with closed cycle refrigeration system, Int. J. Infrared and Millimeter Waves. 10: 579 (1989).ADSCrossRefGoogle Scholar
  42. 42.
    R. Blundell, M. C. Carter and K. H. Gundlach, A low-noise SIS receiver covering the frequency range 215–250 GHz. Int. J. Infrared and Millimeter Waves. 9:361 (1988).ADSCrossRefGoogle Scholar
  43. 43.
    B. N. Ellison and R. E. Miller, A low-noise 230 GHz SIS receiver, Int. J. Infrared and Millimeter Waves. 8: 609 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    A. R. Kerr and S.-K. Pan, unpublished results (1990).Google Scholar
  45. 45.
    R. Blundell, E. E. Bloemhof, D. C. Papa and K. H. Gundlach, unpublished results (1990).Google Scholar
  46. 46.
    R. Blundell and K.H. Gundlach, A quasiparticle SIN mixer for the 230 GHz frequency range. Int. J. Infrared and Millimeter Waves. 8: 1577 (1987).ADSCrossRefGoogle Scholar
  47. 47.
    C. E. Tong, L. Chemin and R. Blundell, Harmonic mixing in a superconducting tunnel junction. J. Appl. Phvs. 68: 4192 (1990).ADSCrossRefGoogle Scholar
  48. 48.
    L. Chemin and R. Blundell, Harmonic mixing in a superconductor-insulator-normal tunnel junction receiver, to be published, J. Appl. Phys. Corres. Feb (1991).Google Scholar
  49. 49.
    B. N. Ellison, P. L. Schaffer, W. Schaal, D. Vail and R. E. Miller, A 345 GHz receiver for radioastronomy, Int. J. Infrared and Millimeter Waves. 10: 937 (1989).ADSCrossRefGoogle Scholar
  50. 50.
    E. C. Sutton, W. C. Danchi, P. A. Jaminet and R. H. Ono, A superconducting tunnel junction receiver for 345 GHz. Int. J. Infrared and Millimeter Waves. 11: 133 (1990).ADSCrossRefGoogle Scholar
  51. 51.
    A. I. Harris and W. Wild, unpublished results (1989).Google Scholar
  52. 52.
    R. Blundell, E. E. Bloemhof, D. C. Papa and K. H. Gundlach, unpublished results (1990).Google Scholar
  53. 53.
    M. J. Wengler, D. P. Woody, R. E. Miller and T. G. Phillips, A Low-noise receiver for millimeter and submillimeter wavelengths, Int. J. Infrared and Millimeter Waves. 6: 697 (1985).ADSCrossRefGoogle Scholar
  54. 54.
    T. H. Büttgenbach, R. E. Miller, M. J. Wengler, D. M. Watson and T. G. Phillips, A broad-band, low-noise SIS receiver for submillimeter astronomy, IEEE Trans. Microwave Theory Tech., MTT-36: 1720 (1988).ADSCrossRefGoogle Scholar
  55. 55.
    D. Winkler, T. Claeson, and S. Rudner, Josephson interference and its suppression in SIS mixers operating close to the gap frequency, p. 1005, im “SQUID 85”, H. D. Hahlbohm and H. Lübbig, ed., Walter de Gruyter & Co., Berlin (1985).Google Scholar
  56. 56.
    D. G. Jablonski and M. W. Henneberger, Influence of Josephson currents on superconductor-insulator-superconductor mixer performance. J. Appl. Phys., 58: 3814 (1985).ADSCrossRefGoogle Scholar
  57. 57.
    D. Winkler, Properties of quasiparticle mixers at frequencies corresponding to the superconducting energy gap, thesis ISBN 91-7032-307-0, Göteborg 1987, Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden.Google Scholar
  58. 58.
    S. Imai, S. Morita, A. Ishikawa, Y. Takeuti, and N. Mikoshiba, Submillimeter wave response of tunnel junctions with an insulating barrier containing magnetic impurities, IEEE Trans. Mag. MAG-21: 906 (1985).ADSCrossRefGoogle Scholar
  59. 59.
    D. Winkler and T. Claeson, High frequency limits of superconducting tunnel junction mixers. J. Appl. Phvs. 62: 4482 (1987).ADSCrossRefGoogle Scholar
  60. 60.
    M. J. Feldman, Theoretical considerations for THz SIS mixers, Int. J. Infrared and Millimeter Waves. 8: 1287 (1987).ADSCrossRefGoogle Scholar
  61. 61.
    R. L. Kautz, Picosecond pulses on superconducting striplines, J. Appl. Phys., 49: 308 (1978)ADSCrossRefGoogle Scholar
  62. 62.
    O. Entin-Wohlman, Effect of microwave radiation on tunneling between superconductors, Phvs. Rev. B. 22: 5225 (1980).ADSCrossRefGoogle Scholar
  63. 63.
    M. J. Feldman and S. Rudner, Mixing with SIS arrays, in: “Reviews in Infrared and Millimeter Waves,” K. J. Button, ed., Plenum, New York 1:47 (1983).CrossRefGoogle Scholar
  64. 64.
    S. Withington and E. L. Kollberg, Spectral-domain analysis of harmonic effects in superconducting quasi-particle mixers, IEEE Trans. Microwave Theory Tech., MTT-37: 231 (1989).ADSCrossRefGoogle Scholar
  65. 65.
    J. A. Stern, B. D. Hunt, H. G. LeDuc, A. Judas, W. R. McGrath, S. R. Cypher, and S. K. Khanna, NbN/MgO/NbN SIS tunnel Junctions for submm wave mixers, IEEE Trans. Magn., MAG-25: 1054(1989).ADSCrossRefGoogle Scholar
  66. 66.
    G. L. Kerber, J. E. Cooper, R. S. Morris, J. W. Spargo, and A. G. Toth, NbN-MgO-NbN Josephson tunnel junctions fabricated on thin underlayers of MgO, IEEE Trans. Magn., MAG-25: 1294 (1989).ADSCrossRefGoogle Scholar
  67. 67.
    M. Radparvar, M. J. Berry, R. E. Drake, S. M. Faris, S. R. Whiteley, and L.S. Yu, Fabrication and performance of all NbN Josephson circuits, IEEE Trans. Magn., MAG-23:1480 (1987).ADSCrossRefGoogle Scholar
  68. 68.
    A. Shoji, M. Aoyagi, S. Kosaka, F. Shinoki, and H. Hayakawa, Niobium nitride Josephson tunnel junctions with magnesium oxide barriers, Appl. Phys. Lett., 46: 1098 (1985).ADSCrossRefGoogle Scholar
  69. 69.
    A. Shoji, M. Aoyagi, S. Kosaka, and F. Shinoki, Temperature-dependent properites of niobium nitride Josephson tunnel junctions, IEEE Trans. Magn., MAG-23: 1464 (1987).ADSCrossRefGoogle Scholar
  70. 70.
    J. C. Villigier, L. Vieux-Rochaz, M. Goniche, P. Renard, and M. Vabre, NbN tunnel junctions, IEEE Trans. Magn., MAG-21: 498 (1985ADSCrossRefGoogle Scholar
  71. 71.
    J. M. Martines and R. H. Ono, Fabrication of ultrasmall Nb-A10x-Nb Josephson tunnel junctions, Appl. Phys. Lett., 57: 629 (1990).ADSCrossRefGoogle Scholar
  72. 72.
    A. H. Worsham, D. E. Prober, J. H. Kang, J. X. Przybysz, and M. J. Rooks, High quality sub-micron Nb trilayer tunnel junctions for a 100 GHz SIS receiver, submitted to IEEE Trans. Magn., Sept. (1990).Google Scholar
  73. 73.
    H. Dang and M. Radparvar, A process for fabricating submicron all-refractory Josephson tunnel junction circuits, submitted to IEEE Trans. Magn., Sept., (1990).Google Scholar
  74. 74.
    A. W. Lichtenberger, D. M. Lea, C. Li, F. L. Lloyd, M. J. Feldman, R. J. Mattauch, S.-K. Pan and A. R. Kerr, Fabrication of micron size Nb/Al-Al2O3/Nb junctions with a trilevel resist lift-off process, submitted to IEEE Trans. Magn., Sept., (1990).Google Scholar
  75. 75.
    K. H. Gundlach, Fabrication of Nb-Al/Aloxide-Nb tunnel junctions and first mixer experiments in the 100 GHz frequency range, Working Report 203. IRAM, Domaine Universitaire, 38406 St-Martin-D’Hères, France (1990).Google Scholar
  76. 76.
    M.G. Blamire, R. E. Sometkh, G. W. Morris, and J. E. Evetts, Characteristics of vertically-stacked planar tunnel junction structures, IEEE Trans. Magn., MAG-25: 1135(1989).ADSCrossRefGoogle Scholar
  77. 77.
    E. C. G. Kirk, D. G. Hasko, M. G. Blamire, J. E. Evetts, and H. Ahmed, Fabrication routes for sub-micron whole-wafer Nb/Al2O3/Nb tunnel junctions, Presented at Microcircuit Engineering 89, Cambridge (1989).Google Scholar
  78. 78.
    A. W. Lichtenberger, C. P. McClay, R. J. Mattauch, M. J. Feldman, S.-K. Pan, and A. R. Kerr, Fabrication of Nb/Al-Al2O3/Nb junctions with extremeely low leakage currents, IEEE Trans. Magn., MAG-25: 1247 (1989).ADSCrossRefGoogle Scholar
  79. 79.
    T. Imamura and S. Hasuo, A submicrometer Nb/Al-ox/Nb Josephson junction, J. Appl. Phvs. 64: 1586 (1988).ADSCrossRefGoogle Scholar
  80. 80.
    S. Morohashi, S. Hasuo and T. Yamaoka, Self-aligned contact process for Nb/Al-AlOx/Nb Josephson junctions, Appl. Phys. Lett., 48:254 (1986).ADSCrossRefGoogle Scholar
  81. 81.
    J. M. Lumley, R. E. Somekh, J. E. Evetts, and J. H. James, High quality all refractory Josephson tunnel junctions for SQUID applications, IEEE Trans. Magn., MAG-21: 539 (1985).ADSCrossRefGoogle Scholar
  82. 82.
    M. Gurvitch, M.. Washington, and H. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers, Appl. Phys. Lett., 42: 472 (1983).ADSCrossRefGoogle Scholar
  83. 83.
    E. J. Cukauskas, M. Nisenoff, D. W. Jillie, H. Kroger, and L. N. Smith, High quality niobium-nitride Josephson tunnel junctions, IEEE Trans. Magn., MAG-19: 831 (1983).ADSCrossRefGoogle Scholar
  84. 84.
    H. Kroger, L. N. Smith, and D. W. Jillie, Selective Niobium Anodization Process for Fabricating Josephson Tunnel Junctions, Appl. Phys. Lett., 39: 280 (1981).ADSCrossRefGoogle Scholar
  85. 85.
    R. S. Amos, A. W. Lichtenberger, M. J. Feldman, R. J. Mattauch and E. J. Cukauskas, Fabrication of NbCN/PbBi edge junctions with extremely low leakage currents, submitted to IEEE Trans. Magn., Sept. (1990).Google Scholar
  86. 86.
    R. L. Sandstrom, A. W. Kleinsasser, W. J. Gallagher, and S. I. Raider, Fabrication and performance of all NbN Josephson circuits, IEEE Trans. Magn., MAG-23: 1484 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Raymond Blundell
    • 1
  • Dag Winkler
    • 2
  1. 1.Center for AstrophysicsHarvard-SmithsonianCambridgeUSA
  2. 2.Department of PhysicsChalmers University of TechnologySweden

Personalised recommendations