Advertisement

Imaging of Spatial Structures Of Fiske- and Shapiro-Step States and Photon-Assisted Tunneling States in Josephson Junctions

  • T. Doderer
  • D. Quenter
  • B. Mayer
  • C. A. Krulle
  • A. V. Ustinov
  • R. P. Huebener
  • J. Niemeyer
  • R. Fromknecht
  • R. Poepel
  • U. Klein
  • P. Dammschneider
  • J. H. Hinken

Abstract

We report the first experimental results obtained by Low Temperature Scanning Electron Microscopy (LTSEM) on dynamic states of Josephson tunnel junctions. The spatially resolved measurements dealing with self-resonant modes (Fiskesteps) revealed information about the distribution of the rf-magnetic field amplitudes inside the Josephson junction. We imaged one- and two-dimensional cavity-modes inside a square junction. By coupling a Josephson element phase-coherently to a microwave field we imaged the distribution of the maximum current density of the generated constant-voltage steps (Shapiro-steps). For junction designs used as modern voltage standards we measured homogeneously distributed step-current densities up to the fourth step. By irradiating superconducting tunnel junctions with microwaves photon-assisted tunneling of quasiparticles takes place. Using LTSEM we imaged the standing microwave pattern inside the junction. As a result, the wavelength of the microwave inside a single tunnel junction and the wavelength inside a superconducting stripline is displayed directly. The spatial resolution achieved by LTSEM is about 1–2 μm.

Keywords

Josephson Junction Tunnel Junction Tunneling Conductivity Josephson Current Superconducting Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Barone, G. Paternò, Physics and Applications of the Josephson Effect, John Wiley & Sons, New York (1982)CrossRefGoogle Scholar
  2. [2]
    K.K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986)Google Scholar
  3. [3]
    J. Niemeyer, L. Grimm, Metrologia 25, 135 (1988)ADSCrossRefGoogle Scholar
  4. [4]
    A.H. Dayem, R.J. Martin, Phys. Rev. Lett. 8, 246 (1962)ADSCrossRefGoogle Scholar
  5. [5]
    P.K. Tien, J.P. Gordon, Phys. Rev. 129, 647 (1963)ADSCrossRefGoogle Scholar
  6. [6]
    J. Bosch, R. Gross, R.P. Huebenerin: Josephson Effect — Achievements and Trends, A. Barone, ed., World Scientific Publishing, Singapore, 1986, p. 174Google Scholar
  7. [7]
    R.P. Huebener, Rep. Prog. Phys. 47, 175 (1984)ADSCrossRefGoogle Scholar
  8. [8]
    R.P. Huebener in: Advances in Electronics and Electron Physics, Vol. 70, P.W. Hawkes, ed., Academic Press, New York (1988), p. 1Google Scholar
  9. [9]
    J. Bosch, R. Gross, M. Koyanagi, R.P. Huebener, J. Low Temp. Phys. 68, 245 (1987)ADSCrossRefGoogle Scholar
  10. [10]
    J. Mannhart, J. Bosch, R. Gross, R.P. Huebener, J. Low Temp. Phys. 70, 459 (1988)ADSCrossRefGoogle Scholar
  11. [11]
    H. Seifert, R.P. Huebener, P.W. Epperlein, Phys. Lett. 95A, 326 (1983)ADSGoogle Scholar
  12. [12]
    R. Gross, D.B. Schmid, R.P. Huebener, J. Low Temp. Phys. 62, 245 (1986)ADSCrossRefGoogle Scholar
  13. [13]
    H. Seifert, Cryogenics 22, 657 (1982)CrossRefGoogle Scholar
  14. [14]
    T. Doderer, H.-G. Wener, R. Moeck, C. Becker, R.P. Huebener, Cryogenics 30, 65 (1990)CrossRefGoogle Scholar
  15. [15]
    J. Niemeyer in: Superconducting Quantum Electronics, V. Kose, ed., Springer-Verlag, Berlin (1989) p. 228CrossRefGoogle Scholar
  16. [16]
    R. Gross, M. Koyanagi, J. Low Temp. Phys. 60, 277 (1985)ADSCrossRefGoogle Scholar
  17. [17]
    M.A.H. Nerenberg, P.A. Forsyth, Jr., J.A. Blackburn, J. Appl. Phys. 47, 4148 (1976)ADSCrossRefGoogle Scholar
  18. [18]
    H. Svensmark in: SQUID ′85, Superconducting Quantum Interference Devices and their Applications, H.D. Hahlbohm, H. Liibbig, eds., Walter de Gruyter, Berlin (1985) p. 471Google Scholar
  19. [19]
    T.C. Wang, R.I. Gayley, Phys. Rev. B 18, 293 (1978)ADSCrossRefGoogle Scholar
  20. [20]
    R.F. Broom, P. Wolf, Phys. Rev. B 16, 3100 (1977)ADSCrossRefGoogle Scholar
  21. [21]
    B. Mayer, T. Doderer, R.P. Huebener, to be publishedGoogle Scholar
  22. [22]
    P.W. Epperlein, H. Seifert, R.P. Huebener, Phys. Lett. 92A, 146 (1982)ADSGoogle Scholar
  23. [23]
    S. Meepagala, J.T. Chen, J.-J. Chang, Phys. Rev. B 36, 809 (1987)ADSCrossRefGoogle Scholar
  24. [24]
    R.L. Kautz, CA. Hamilton, F.L. Lloyd, IEEE Trans. Magn., MAG-23, 883 (1987)ADSCrossRefGoogle Scholar
  25. [25]
    J.-J. Chang, C.H. Ho, DJ. Scalapino, Phys. Rev. B 31, 5826 (1985)ADSGoogle Scholar
  26. [26]
    J. Bosch, R. Gross, M. Koyanagi, R.P. Huebener, Phys. Rev. Lett. 54, 1448 (1985)ADSCrossRefGoogle Scholar
  27. [27]
    N.F. Pedersen, A. Davidson, Phys. Rev. B 41, 178 (1990)ADSGoogle Scholar
  28. [28]
    G. Costabile, R. Monaco, S. Pagano, G. Rotoli, Phys. Rev. B 42, 2651 (1990)ADSCrossRefGoogle Scholar
  29. [29]
    M. Cirillo, F.L. Lloyd, J. Appl. Phys. 61, 2581 (1987)ADSCrossRefGoogle Scholar
  30. [30]
    G. Costabile, R. Monaco, S. Pagano, J. Appl. Phys. 63, 5406 (1988)ADSCrossRefGoogle Scholar
  31. [31]
    J.-J. Chang, Phys. Rev. B 34, 6137 (1986)ADSCrossRefGoogle Scholar
  32. [32]
    CA. Hamilton, S. Shapiro, Phys. Rev. B 2, 4494 (1970)ADSCrossRefGoogle Scholar
  33. [33]
    J.C Swihart, J. Appl. Phys. 32, 461 (1961)ADSCrossRefGoogle Scholar
  34. [34]
    J. Bosch, R. Gross, R.P. Huebener, J. Niemeyer, Appl. Phys. Lett. 47, 1004 (1985)ADSCrossRefGoogle Scholar
  35. [35]
    J. Niemeyer, J.H. Hinken, R.L. Kautz, Appl. Phys. Lett. 45, 478 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • T. Doderer
    • 1
  • D. Quenter
    • 1
  • B. Mayer
    • 1
  • C. A. Krulle
    • 1
  • A. V. Ustinov
    • 1
    • 3
  • R. P. Huebener
    • 1
  • J. Niemeyer
    • 2
  • R. Fromknecht
    • 2
  • R. Poepel
    • 2
  • U. Klein
    • 4
  • P. Dammschneider
    • 4
  • J. H. Hinken
    • 4
    • 5
  1. 1.Physikalisches InstitutLehrstuhl Experimentalphysik II, Universität TübingenGermany
  2. 2.Physikalisch-Technische BundesanstaltGermany
  3. 3.Institute of Solid State PhysicsUSSR Academy of SciencesRussia
  4. 4.Institut für HochfrequenztechnikTechnische Universität BraunschweigGermany
  5. 5.Hans Kolbe & Co.FUBA-ForschungszentrumGermany

Personalised recommendations