InAs/GaSb/AlSb: The Material System of Choice for Novel Tunneling Devices

  • D. A. Collins
  • D. H. Chow
  • E. T. Yu
  • D. Z.-Y. Ting
  • Y. Rajakarunanayake
  • T. C. McGill
  • J. R. Söderström
Part of the NATO ASI Series book series (NSSB, volume 277)


The nearly lattice—matched InAs/GaSb/AlSb system offers tremendous flexibility in designing novel heterostructures due to the wide range of available band alignments. We have recently exploited this advantage to demonstrate several different devices exhibiting negative differential resistance (NDR) based on interband tunneling. These devices show a wide range of different characteristics including very high peak current densities (1.6 × 105 A/cm2) or peak to valley current ratios (20:1 at 300K and 88:1 at 77K). We have also studied “traditional” double barrier (resonant) tunneling in the InAs/GaSb/AlSb system. In particular, extremely high peak current densities in InAs/AlSb double barrier devices have been exploited to fabricate oscillators operating at the highest frequencies yet reported. Two and three terminal tunneling devices in this material system show great promise for use in high frequency analog and digital applications.


Resonant Tunneling Peak Current Density Negative Differential Resistance Valence Band Edge Resonant Tunneling Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.J. Gualtieri, G.P. Schwartz, R.G. Nuzzo, R.J. Malik, and J.F. Walker, “Determination of the (100) InAs/GaSb heterojunction valence—band discontinuity by x—ray photoemission core level spectroscopy,” J. Appl. Phys., vol. 61, no. 12, pp. 5337–5341, 1987.ADSCrossRefGoogle Scholar
  2. 2.
    G.J. Gualtieri, G.P. Schwartz, R.G. Nuzzo, and W.A. Sunder, “X—ray photoemission core level determination of the GaSb/AISb heterojunction valence—band discontinuity,” Appl. Phys. Lett., vol. 49, no. 16, pp. 1037–1039, 1986.ADSCrossRefGoogle Scholar
  3. 3.
    The value of the band offsets between InAs and AlSb have been derived using the transivity of the band offsets.Google Scholar
  4. 4.
    T.M. Rossi, D.A. Collins, D.H. Chow, and T.C. McGill, “P—type doping of gallium antimonide grown by molecular beam epitaxy using silicon,” unpublished.Google Scholar
  5. 5.
    L.F. Luo, R. Beresford, and W.I. Wang, “Resonant tunneling in A1Sb/InAs/ALSb double—barrier heterostructures,” Appl. Phys. Lett. vol. 53, no. 23, pp. 2320–2322, 1988.ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Söderström, D.H. Chow, and T.C. McGill, “InAs/A1Sb double—barrier structure with large peak—to—valley current ratio: a candidate for high—frequency microwave devices,” IEEE Elec. Dev. Lett., vol. 11, no. 1, pp. 27–29 1990.ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Söderström, T.C. McGill, and E.R. Brown, unpublished.Google Scholar
  8. 8.
    M. Sweeny and J. Xu, “Resonant interband tunnel diodes,” Appl. Phys. Lett., vol. 54, no. 6, pp. 546–548, 1989.ADSCrossRefGoogle Scholar
  9. 9.
    J.R. Söderström, D.H. Chow, and T.C. McGill, “New negative differential resistance device based on resonant interband tunneling,” Appl. Phys. Lett., vol. 55, no. 11, pp. 1094–1096, 1989.ADSCrossRefGoogle Scholar
  10. 10.
    L.F. Luo, R. Beresford, and W.I. Wang, “Interband tunneling in polytype GaSb/AlSb/InAs heterostructures,” Appl. Phys. Lett., vol. 55, no. 19, pp. 2023–2025,1989.ADSCrossRefGoogle Scholar
  11. 11.
    A.R. Bonnefoi, D.H. Chow, and T.C. McGill, “Inverted base—collector tunnel transistors,” Appl. Phys. Lett. 47, 888 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Mead, IRE 48, 359 (1960).Google Scholar
  13. 13.
    J. N. Schulman and M. Waldner, “Analysis of second level resonant tunneling diodes and transistors,” J. Appl. Phys., vol. 63., pp. 2859 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    D.H. Chow, J.R. Söderström, D.A. Collins, D.Z.-Y. Ting, E.T. Yu, and T.C. McGill, “Novel InAs/GaSb/AlSb tunnel structures,” to appear in Proc. IEEE SPIE meeting, March 1990.Google Scholar
  15. 15.
    E.R. Brown, T.C.L.G. Sollner, C.D. Parker, W.D. Goodhue, and C.L. Chen, “Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes,” Appl. Phys. Lett., vol. 55, no. 17, pp. 1777–1779, 1989.ADSCrossRefGoogle Scholar
  16. 16.
    S.K. Diamond, E. Özbay, M.J.W. Rodwell, D.M. Bloom, E. Wolak, and J.S. Harris, “Fabrication of 200—GHz fmaz resonant—tunneling diodes for integrated circuit and microwave applications,” IEEE Elec. Dev. Lett., vol. 10, no. 3, pp. 104–106, 1989.ADSCrossRefGoogle Scholar
  17. 17.
    E. R. Brown, J. Söderström, and T. C. McGill, unpublished.Google Scholar
  18. 18.
    K. Taira, I. Hase, and H. Kawai, Electronics Letters 25, 1708 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    D.Z.-Y. Ting, E.T. Yu, D.A. Collins, D.H. Chow, and T.C. McGill, “Modeling of novel heterojunction tunnel structures,” to appear in J. Vac. Sci. Technol., July/August 1990.CrossRefGoogle Scholar
  20. 20.
    D. A. Collins and T.C. McGill, unpublished.Google Scholar
  21. 21.
    S.K. Diamond, E. Ozbay, M.J.W. Rodwell, D.M. Bloom, Y.C. Pao, and J.S. Harris, “Resonant tunneling diodes for switching applications,” Appl. Phys. Lett. 54, 153 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. A. Collins
    • 1
  • D. H. Chow
    • 1
  • E. T. Yu
    • 1
  • D. Z.-Y. Ting
    • 1
  • Y. Rajakarunanayake
    • 1
  • T. C. McGill
    • 1
  • J. R. Söderström
    • 2
  1. 1.T. J. Watson, Sr., Laboratory of Applied PhysicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of PhysicsChalmers UniversityGötebörgSweden

Personalised recommendations