Skip to main content

High-Frequency Oscillators Based on Resonant Tunneling

  • Chapter
Resonant Tunneling in Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 277))

Abstract

We summarize improvements to the performance of oscillators based on double-barrier resonant-tunneling diodes and their relationship to developments in three material systems. Higher frequencies, and more recently higher output powers, have resulted from these materials developments, so that today waveguide oscillators produce output power of up to a milliwatt at lower frequencies and about one microwatt near 400 GHz. The basic concepts of resonant-tunneling oscillators are described, and the ways in which new materials contribute to improved device characteristics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.F. Trambarulo, International Solid-State Circuits Conference, Philadelphia, PA, 1961.

    Google Scholar 

  2. This expression has been derived for any resonant state, e.g., by J. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics (Springer, Berlin, 1979). Its application to RTDs has been pointed out by B. Ricco and M.Ya. Azbel, “Physics of resonant tunneling: The one-dimensional double-barrier case,” Phys. Rev. B 29, 1970 (1984) and by D.D. Coon and H.C. Liu, “Frequency limit of double barrier resonant tunneling oscillators,” Appl. Phys. Lett. 49, 94 (1986).

    Google Scholar 

  3. R.K. Mains and G.I. Haddad, “Time-dependent modeling of resonant-tunneling diodes from direct solution of the Schrödinger equation,” J. Appl. Phys. 64, 3564 (1988).

    Article  ADS  Google Scholar 

  4. E.R. Brown, C.D. Parker, and T.C.L.G. Sollner, “Effect of quasibound-state lifetime on the oscillation power of resonant tunneling diodes,” Appl. Phys. Lett. 54, 934 (1989).

    Article  ADS  Google Scholar 

  5. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  6. E.R. Brown, W.D. Goodhue, and T.C.L.G. Sollner, “Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary-state tunneling theory,” J. Appl. Phys. 64, 1519 (1988).

    Article  ADS  Google Scholar 

  7. T.C.L.G. Sollner, P.E. Tannenwald, D.D. Peck, and W.D. Goodhue, “Quantum well oscillators,” Appl. Phys. Lett. 45, 1319 (1984).

    Article  ADS  Google Scholar 

  8. See, e.g., T.J. Shewchuk, P.C. Chapin, P.D. Coleman, W. Kopp, R. Fischer, and H. Morkoç, “Resonant tunneling oscillations in a GaAs-AlxGai_xAs heterostructure at room temperature,” Appl. Phys. Lett. 46, 508 (1985) and W.D. Goodhue, T.C.L.G. Sollner, H.Q. Le, E.R. Brown, and B.A. Vojak, “Large room-temperature effects from resonant tunneling through AlAs barriers,” Appl. Phys. Lett. 49, 1086 (1986).

    Google Scholar 

  9. This work is summarized in Refs. 4, 6, 7 and E.R. Brown, T.C.L.G. Sollner, C.D. Parker, W.D. Goodhue, and C.L. Chen, “Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes,” Appl. Phys. Lett. 55, 1777 (1989).

    Google Scholar 

  10. A. Rydberg, H. Grönqvist, E. Kollberg, “A theoretical and experimental investigation on millimeter-wave quantum well oscillators,” Microwave Opt. Technol. Lett. 1, 333 (1988).

    Article  ADS  Google Scholar 

  11. T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, and S. Hiyamizu, “A pseudomorphic In0.53Ga0.47As/AIAs resonant tunneling barrier with a peak-to-valley current ratio of 14 at room temperature,” Jpn. J. Appl. Phys. 26, L1332 (1987).

    Article  ADS  Google Scholar 

  12. T.P.E. Broekaert, W. Lee, and C.G. Fonstad, “Pseudomorphic In0.53Ga0.47As/A1As/InAs resonant tunneling diodes with peak-to-valley current ratios of 30 at room temperature,” Appl. Phys. Lett. 53, 1545 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sollner, T.C.L.G., Brown, E.R., Söderström, J.R., McGill, T.C., Parker, C.D., Goodhue, W.D. (1991). High-Frequency Oscillators Based on Resonant Tunneling. In: Chang, L.L., Mendez, E.E., Tejedor, C. (eds) Resonant Tunneling in Semiconductors. NATO ASI Series, vol 277. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3846-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3846-2_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6716-1

  • Online ISBN: 978-1-4615-3846-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics