Low-Dimensional Resonant Tunneling

  • Philip F. Bagwell
  • Terry P. Orlando
  • Arvind Kumar
Part of the NATO ASI Series book series (NSSB, volume 277)


Resonant tunneling occurs for a wide variety of possible device geometries in one, two, and three dimensional conductors. The simplest example is the one and two dimensional analogue of the standard three dimensional resonant tunneling diode. We consider these three resonant tunneling devices operated as either a diode or a transistor by developing a ‘convolution method’ to calculate the device currents. Next, we consider resonant tunneling in a quasi-one-dimensional wire where the normal modes transverse to the tunneling direction cannot be neglected. Many unusual scattering properties, due to the existence of evanescent modes induced by the confinement, are found near quasi-one-dimensional subband minima or quasi-bound states in the wire.


Fermi Energy Transmission Coefficient Quantum Wire Tunneling Current Resonant Tunneling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.F. Bagwell, T.P.E. Broekaert, T.P. Orlando, and C.G. Fonstad, `Resonant Tunneling Diodes and Transistors with a One, Two, or Three Dimensional Electron Emitter’, to appear in J. Appl. Phys., October 15, 1990.Google Scholar
  2. 2.
    R. Landauer, `Electrons as Guided Waves in Laboratory Structures: Strengths and Problems’, Analogies in Optics and Micro-Electronics, W. van Haeringen and D. Lenstra eds., (Kluwer, Academic Press, in press).Google Scholar
  3. 3.
    M. Büttiker, `Symmetry of Electrical Conduction’, IBM J. Res. Dev., 32:317 (1988).CrossRefGoogle Scholar
  4. 4.
    M. Büttiker, `Coherent and Sequential Tunneling in Series Barriers’, IBM J. Res. Dev., 32:63 (1988).CrossRefGoogle Scholar
  5. 5.
    P.J. Price, `Theory of Resonant Tunneling in Heterostructures’, Phys. Rev. B, 38:1994 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    G.A. Toombs and F.W. Sheard, `The Background to Resonant Tunneling Theory’, Electronic Properties of Multilayers and Low-Dimensional Structures, J.M. Chamberlain, L. Eaves, and J.C. Portal, eds., (Plenum, New York, in press).Google Scholar
  7. 7.
    P.F. Bagwell and T.P. Orlando, ‘Landauer’s Conductance Formula and its Generalization to Finite Voltages’, Phys. Rev. B, 40:1456 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    P.F. Bagwell and T.P. Orlando, `Broadened Conductivity Tensor and Density of States for a Superlattice Potential in One, Two, and Three Dimensions’, Phys. Rev. B, 40:3757 (1989).Google Scholar
  9. 9.
    S. Luryi, `Frequency Limit of Double-Barrier Resonant Tunneling Oscillators’, Appl. Phys. Lett., 47:490 (1985). See also L.V. Iogansen, `Thin-Film Electron Interferometers’, Sov. Phys. Usp., 8:413 (1965).Google Scholar
  10. 10.
    R. Tsu and L. Esaki, `Tunneling in a Finite Superlattice’, Appl. Phys. Lett, 49:562 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    The convolution symbol ⊗ has its usual meaning \( A\left( E \right) \otimes B\left( E \right) = \int_{{ - \infty }}^{\infty } {A\left( {E'} \right)} B\left( {E - E'} \right)dE' = \int_{{ - \infty }}^{\infty } {A\left( {E - E'} \right)B\left( {E'} \right)dE'} (23) \) Google Scholar
  12. 12.
    H.C. Liu and G.C. Aers, `Resonant Tunneling Through One-, Two-, and Three-Dimensionally Confined Quantum Wells’, J. Appl. Phys, 65:4908 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    H. Ohno, E.E. Mendez, and W.I. Wang, `Effects of Carrier Mass Differences on the Current Voltage Characteristics of Resonant Tunneling Structures’, Appl. Phys. Lett., 56:1793 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    K. Ismail, D.A. Antoniadis, and H.I. Smith, `Lateral Resonant Tunneling in a Double-Barrier Field-Effect Transistor’, Appl. Phys. Lett., 55:589 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    F.M. Peeters, `Bound and Resonant States in Quantum Wire Structures’, Science and Engineering of 1- and 0- Dimensional Semiconductors, S. Beaumont and C. Sotomayor-Torres eds., (Plenum, New York, in press).Google Scholar
  16. 16.
    J. Masek, P. Lipaysky, and B. Kramer, `Coherent Potential Approach for the Zero Temperature DC Conductance of Weakly Disordered Narrow Systems’, J. Phys.: Cond. Matt., 1:6395 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    C.S Chu and R.S. Sorbello, `Effect of Impurities on the Quantized Conductance of Narrow Channels’, Phys. Rev. B, 40:5941 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    P.F. Bagwell, `Evanescent Modes and Scattering in Quasi-One-Dimensional Wires’, Phys. Rev. B, 41:10354 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    P.F. Bagwell, `Solution of Dyson’s Equation in a Quasi-1D Wire’, J. Phys.: Cond. Matt., 2:6179 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    E. Tekman and S. Ciraci, `Ballistic Transport Through Quantum Point Contacts: Elastic Scattering by Impurities’, to be published.Google Scholar
  21. 21.
    A. Kumar and P.F. Bagwell, `Resonant Tunneling in a Multi-Channel Wire’, to appear in Solid State Comm., 75:949 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    A. Kumar and P.F. Bagwell, `Resonant Tunneling in a Quasi-One-Dimensional Wire: Influence of Evanescent Modes’, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Philip F. Bagwell
    • 1
  • Terry P. Orlando
    • 1
  • Arvind Kumar
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations