Advertisement

Time-Resolved Resonant Tunneling between GaAs/Al0.35Ga0.65As Quantum Wells: A Coherent Process?

  • M. G. W. Alexander
  • W. W. Rühle
  • M. Nido
  • K. Köhler
Part of the NATO ASI Series book series (NSSB, volume 277)

Abstract

Electron and hole tunneling transfer processes in asymmetric double quantum well structures are investigated by time-resolved picosecond photoluminescence. Change from nonresonant to resonant tunneling is achieved with a perpendicular electric field. Electron and hole transfer times become considerably faster in the resonant regime. The transfer times decrease strongly with the barrier thickness. We observe neither coherent oscillation nor LO phonon intersubband scattering times for electron tunneling. We discuss the importance of the homogeneous and inhomogeneous line broadening mechanisms for the question of coherent vs. incoherent tunneling.

Keywords

Quantum Well Transfer Time Resonant Tunneling Barrier Thickness Tunneling Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Optics Lett. 12:483 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    M. Tsuchiya, T. Matsusue, and H. Sakaki, Tunneling escape rate of electrons from quantum well in double-barrier heterostructures, Phys. Rev. Lett. 59:2356 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    T. Tada, A. Yamaguchi, T. Ninomiya, H. Uchiki, T. Kobayashi, and T. Yao, Tunneling process in AlAs/GaAs double quantum wells studied by photoluminescence, J. Appl. Phys. 63:5491 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    T. B. Norris, X. J. Song, W. J. Schaff, L. F. Eastman, G. Wicks, and G. A. Mourou, Tunneling escape time of electrons from a quantum well under the influence of an electric field, Appl. Phys. Lett. 54:60 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    T. B. Norris, N. Vodjdani, B. Vinter, C. Weisbuch, and G. A. Mourou, Chargetransfer-state photoluminescence in asymmetric coupled quantum wells, Phys. Rev. B 40:1392 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    M. G. W. Alexander, W.W. Rühle, R. Sauer, and W. T. Tsang, Time-resolved measurements of tunneling between double quantum wells in In0.53Ga0.47As/InP, Appl. Phys. Lett. 55:885 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    D. Y. Oberli, J. Shah, T. C. Damen, C. W. Tu, T. Y. Chang, D. A. B. Miller, J. E. Henry, R. F. Kopf, N. Sauer, and A. E. DiGiovanni, Direct measurement of resonant and nonresonant tunneling times in asymmetric coupled quantum wells, Phys. Rev. B 40:3028 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    M. Nido, M. G. W. Alexander, W. W. Rühle, T. Schweizer, and K. Köhler, Nonresonant electron and hole tunneling times in GaAs/Alx Ga1-x,As asymmetric double quantum wells, Appl. Phys. Lett. 56:355 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    B. Deveaud, F. Clérot, A. Chomette, A. Regreny, R. Ferreira, G. Bastard, and B. Sermage, Tunneling and relaxation in coupled quantum wells, Europhys. Lett. 11:367 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    D. Y. Oberli, J. Shah, T. C. Damen, J. M. Kuo, J. E. Henry, J. Lary, and S. M. Goodnick, Optical phonon-assisted tunneling in doubled quantum well structures, Appl. Phys. Lett. 56:1239 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    M. G. W. Alexander, M. Nido, W.W. Rühle, and K. Köhler, Resonant tunneling transfer times between asymmetric GaAs/AlxGa1-xAs double quantum wells, Phys. Rev. B in pressGoogle Scholar
  12. 12.
    M. Nido, M. G. W. Alexander, W. W. Rühle, and K. Köhler, Electron and hole tunneling transfer times in GaAs/AlxGa1-xAs asymmetric double quantum wells under electric field, Proc. SPIE, Den Haag, The Netherlands, 12–16 March 1990 in pressGoogle Scholar
  13. 13.
    K. Leo, J. Shah, J. P. Gordon, T. C. Damen, D. A. B. Miller, C. W. Tu, J. E. Cunningham, and J. E. Henry, Hole tunneling in GaAs/AlGaAs heterostructures: coherent vs. incoherent resonant tunneling, Proc. SPIE, San Diego Cal., USA, 19–23 March 1990 in pressGoogle Scholar
  14. 14.
    H. T. Grahn, H. Schneider, W. W. Riihle, K. v. Klitzing, and K. Ploog, Non-thermal occupation of higher subbands in semiconductor superlattices via sequential resonant tunneling, Phys. Rev. Lett. 64:2426 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    A. Tackeuchi, S. Muto, T. Inata, and T. Fujii, Fast recovery of excitonic absorption peaks in tunneling hi-quantum-well structures, Jap. J. of Appl. Phys. 28:L1098 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    G. Livescu, A. M. Fox, D. A. B. Miller, T. Sizer, W. H. Knox, A. C. Gossard, and J. H. English, Resonantly enhanced electron tunneling rates in quantum wells, Phys. Rev. Lett. 63:438 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    C. Tanguy, B. Deveaud, A. Regreny, and D. Hulin, Charge density dependence of carrier tunneling in asymmetric quantum well structures, Proc. SPIE, Den Haag, The Netherlands, 12–16 March 1990 in pressCrossRefGoogle Scholar
  18. 18.
    M. K. Jackson, M. B. Johnson, D. H. Chow, T. C. McGill, and C. W. Nieh, Electron tunneling time measured by photoluminescence excitation correlation spectroscopy, Appl. Phys. Lett. 54:552 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    N. Sawaki, R. A. Höpfel, E. Gornik, and H. Kano, Time-resolved measurement of tunneling and energy relaxation of hot electrons in GaAs/AlGaAs double quantum well structures, Appl. Phys. Lett. 55:1996 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    E. O. Göbel, Ultrafast spectroscopy in semiconductors, in: “Festkörperprobleme/Advances in Solid State Physics, vol. 30”, U. Rössler, ed., Vieweg, Braunschweig (in press)Google Scholar
  21. 21.
    S. W. Kirchoefer, R. Magno, and J. Comas, Negative differential resistance at 300K in a superlattice quantum state transfer device, Appl. Phys. Lett. 44:1054 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    S. Luryi, Possibility of a direct observation of the time evolution in heterostructure barrier tunneling, Solid State Comm. 65:787 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    T. Weil and B. Vinter, Calculation of phonon-assisted tunneling between two quantum wells, J. Appl. Phys. 60:3227 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    R. Ferreira and G. Bastard, Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures, Phys. Rev. B 1340:1074 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    H.-J. Polland, L. Schultheis, J. Kuhl, E. O. Göbel, and C. W. Tu, Lifetime enhancement of two-dimensional excitons by the quantum-confined stark effect, Phys. Rev. Lett. 55:2610 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Cossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Electric field dependence of optical absorption near the band gap of quantum-well structures, Phys. Rev. B 32:1043 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliot, Linewidth dependence of radiative exciton lifetimes in quantum wells, Phys. Rev. Lett. 59:2337 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    M. C. Tatham, J. F. Ryan, and C. T. Foxon, Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells, Phys. Rev. Lett. 63:1637 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    T. Held and G. Mahler, private communicationGoogle Scholar
  30. 30.
    S. Adachi, GaAs, AlAs, and AlxCa1-x As: Material parameters for use in research and device applications, J. Appl. Phys. 58:R1 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. G. W. Alexander
    • 1
  • W. W. Rühle
    • 1
  • M. Nido
    • 2
  • K. Köhler
    • 3
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany
  2. 2.NEC CorporationOpto-Electronics Research LaboratoriesKawasaki, Kanagawa 213Japan
  3. 3.Fraunhofer-Institut für Angewandte FestkörperphysikFreiburgGermany

Personalised recommendations