Scattering Processes, Coherent and Incoherent Transport in Resonant Tunneling Structures

  • B. Vinter
  • F. Chevoir
Part of the NATO ASI Series book series (NSSB, volume 277)


We describe a conceptually simple theory of dc transport of electrons across a resonant tunneling structure. Scattering processes are included by using Fermi’s golden rule between the unperturbed states of the tunneling structure. The theory describes in a natural way how the scattering processes broaden the transmission resonance from the purely coherent transmission resonance; it also shows how the scattering processes determine the valley current. The theory has no adjustable parameters. We apply it to several situations and demonstrate in particular that the valley current calculated agrees well with observation both with regard to structure in the valley current and peak-to-valley ratios.


Transmission Probability Resonant State Resonant Tunneling Interface Roughness Double Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Tsu and L. Esaki, Tunneling in a finite superlattice, Appl. Phys. Lett. 22:562 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    B. Ricco and M. Y. Azbel, Physics of resonant tunneling. The one-dimensional double-barrier case, Phys. Rev. B 29:1970 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    M. Büttiker, Coherent and sequential tunneling in series barriers, IBM J. Res. Dev. 32:63 (1988).CrossRefGoogle Scholar
  4. 4.
    N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Resonant tunneling with electron-phonon interaction:an exactly solvable model, Phys.Rev.Lett. 61:1396 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Inelastic scattering in resonant tunneling, Phys. Rev. B 40:11834 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    M. Jonson, Quantum-mechanical resonant tunneling in the presence of a boson field, Phys.Rev.B 39:5924 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    H. A. Fertig and S. Das Sarma, Elastic scattering in resonant tunneling systems, Phys. Rev. B 40:7410 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    H. A. Fertig, S. He, and S. Das Sarma, Elastic-scattering effects on resonant tunneling in double-barrier quantum-well structures, Phys. Rev. B 41:3596 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    J. Leo and A. H. MacDonald, Disorder-assisted tunneling through a double-barrier structure, Phys. Rev. Lett. 64:817 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    F. Chevoir and B. Vinter, Calculation of phonon-assisted tunneling and valley current in a double-barrier diode, Appl. Phys. Lett. 55:1859 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    F. Chevoir and B. Vinter, Calculation of incoherent tunneling and valley current in resonant tunneling structures, Surf. Sci. 229:158 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    F. Chevoir and B. Vinter, (manuscript under preparation) (1990).Google Scholar
  13. 13.
    D. Lippens, J. L. Lorriaux, O. Vanbiesen, and L. d. S. Pol, Experimental investigations of the effect of inelastic scattering on resonant tunneling, in: Proceedings on the conference “GaAs and Related Compounds,” Karuizawa, Japan (1989), ed., Institute of Physics, p.(in the press).Google Scholar
  14. 14.
    A. D. Stone and P. A. Lee, Effect of inelastic processes on resonant tunneling in one dimension, Phys.Rev.Lett. 54:1196 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    T. Weil and B. Vinter, Equivalence between resonant and sequential tunneling in double-barrier diodes, Appl.Phys.Lett. 50:1281 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    M. Jonson and A. Grincwajg, Effect of inelastic scattering on resonant and sequential tunneling in double barier heterostructures, Appl.Phys.Lett. 51:1729 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    F. W. Sheard and G. A. Toombs, Space-charge buildup and bistability in resonant-tunneling double-barrier structures, Appl.Phys.Lett. 52:1228 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Observation of intrinsic bistability in resonant tunneling structures, Phys. Rev. Lett. 58:1256 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    E. S. Alves, L. Eaves, M. Henini, O. H. Hugues, M. L. Leadbeater, F. W. Sheard, G. A. Toombs, G. Hill, and M. A. Pate, Observation of intrinsic bistability in resonant tunneling devices, Electron. Lett. 24:1190 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    A. Zaslaysky, V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Resonant tunneling and intrinsic bistability in asymmetric double-barrier heterostructures, Aprl. Phys. Lett. 53:1408 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    P. J. Price, Electron transport in polar heterolayers, Surf. Sci. 113:199 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    B. Vinter, The two-dimensional electron gas field effect transistor, in: “Heterojunctions and Semiconductor Superlattices,” G. Allan, G. Bastard, N. Boccara, M. Lannoo, and M. Voos, ed., Springer-Verlag, Berlin and Heidelberg (1985) p.238.Google Scholar
  23. 23.
    T. Weil and B. Vinter, Calculation of phonon-assisted tunneling between two quantum wells, J.Appl.Phys. 60:3227 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54:437 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    J. R. Oppenheimer, Phys.Rev 31:66 (1928).ADSMATHCrossRefGoogle Scholar
  26. 26.
    H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Interface roughness scattering in GaAs/AlAs quantum wells, Apt. Phys. Lett. 51:1934 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    R. Göttinger, A. Gold, G. Abstreiter, G. Weimann, and W. Schlapp, Interface roughness scattering and electron mobilities in thin GaAs quantum wells, Europhys.Lett. 6:183 (1988).ADSCrossRefGoogle Scholar
  28. 28.
    V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Evidence for LO-phonon-emissionassisted tunneling in double-barrier heterostructures, Phys.Rev.B 36:7635 (1987).ADSCrossRefGoogle Scholar
  29. 29.
    S. Muto, T. Inata, Y. Sugiyama, Y. Nakata, T. Fujii, H. Ohnishi, and S. Hiyamizu, Quantum well width dependence of negative differential resistance of InAlAs/InGaAs resonant tunnelint barriers grown by MBE, Jpn. J. Appl. Phys. 26:L220 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, and S. Hiyamizu, A pseudomorphic InGaAs/AlAs resonant tunneling barrier with a peak-to-valley current ratio of 14 at room temperature, Jpn. J. Appl. Phys. 26:L1332 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    F. Chevoir and B. Vinter, Resonant and scattering-assisted magnetotunneling, in: “Resonant Tunneling: Physics and Applications,” L. L. Chang, ed., Plenum, New York (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • B. Vinter
    • 1
  • F. Chevoir
    • 1
  1. 1.Laboratoire Central de RecherchesTHOMSON-CSFOrsayFrance

Personalised recommendations