Skip to main content

The Role of Milk-Derived Antimicrobial Lipids as Antiviral and Antibacterial Agents

  • Chapter

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 310)

Abstract

Milk lipids are not only nutrients but also non-immunoglobulin protective factors1–3. The lipids in human milk do not initially have antimicrobial activity, but become antiviral2, antibacteria14,5 and antiprotozoal6 in vitro following storage and in vivo following digestion in the gastrointestinal tract of the milk-fed infant2,5,7. Microbial killing by milk lipids is due primarily to free fatty acids (FFAs) and monoglycerides (MGs) released from milk triglycerides by lipases and can be duplicated using purified FFAs and MGs8,9.

Keywords

  • Antiviral Activity
  • Milk Sample
  • Human Milk
  • Stomach Content
  • Envelop Virus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. K. Welsh, M. Arsenakis, R. J. Coelen, and J. T. May, J. Infect. Dis. 140: 322 (1979).

    CrossRef  PubMed  CAS  Google Scholar 

  2. C. E. Isaacs, H. Thormar, and T. Pessolano, J. Infect. Dis. 154: 966 (1986).

    CrossRef  PubMed  CAS  Google Scholar 

  3. J. K. Welsh, I. J. Skurrie, and J. T.May ,Infect. Immun. 19: 395 (1978).

    PubMed  CAS  Google Scholar 

  4. J. J. Kabara, Nutr. Rev. 38: 65 (1980).

    CrossRef  PubMed  CAS  Google Scholar 

  5. C. E. Isaacs and H. Thormar, in: “Breastfeeding, Nutrition, Infection and Infant Growth in Developed and Emerging Countries”, S. A. Atkinson, L. A. Hanson, and R. K. Chandra, eds., p. 161, Arts Biomedical Publishers and Distributors, St. John’s Newfoundland, Canada, (1990).

    Google Scholar 

  6. O. Hernell, H. Ward, L. Blackberg, and E. A. Pereira, J. Infect. Dis. 153: 715 (1986).

    CrossRef  PubMed  CAS  Google Scholar 

  7. C. E. Isaacs, S. Kashyap, W. C. Heird, and H. Thormar, Arch. Dis. Childhood 65: 861 (1990).

    CrossRef  CAS  Google Scholar 

  8. H. Thormar, C. E. Isaacs, H. Brown, M. R. Barshatzky, and T. Pessolano, Antimicrob. Agents Chemo. 31: 27 (1987).

    CrossRef  CAS  Google Scholar 

  9. J. J. Kabara, in: “Symposium on the Pharmacological Effect of Lipids”, J. J. Kabara, ed., p. 1, The American Oil Chemists Society, St. Louis, MO, (1978).

    Google Scholar 

  10. S. J. Miller, R. Aly, H. R. Shinefeld, and P. M. Elias, Arch. Dermatol. 124: 209 (1988).

    CrossRef  PubMed  CAS  Google Scholar 

  11. R. Aly, H. I. Maibach, H. R. Shinefield, and W. G. Strauss, J. Invest. Dermatol. 58: 205 (1972).

    CrossRef  PubMed  CAS  Google Scholar 

  12. J. D. Coonrod, Eur. J. Respir. Dis. 71: 209 (1987).

    Google Scholar 

  13. R. Eliakim, K. DeSchryver-Kecskemetis, L. Nogee, W. F. Stenson, and D. H. Alpers, J. Biol. Chem. 264: 20614 (1989).

    PubMed  CAS  Google Scholar 

  14. K. Rosell and L. M. Srivastava, Hydrobiologia152:471 (1987).

    Google Scholar 

  15. D. L. Ballantine, W. H. Gerwick, S. M. Velez, E. Alexander, and P. Guevara, Hydrobiologia 152: 463 (1987).

    CrossRef  Google Scholar 

  16. L. S. Martin, J. S. McDougal, and S. L. Loskoski, J. Infect. Dis. 152: 400 (1985).

    CrossRef  PubMed  CAS  Google Scholar 

  17. O. Hernell and T. Olivecrona, J. Lipid Res. 15: 367 (1974).

    PubMed  CAS  Google Scholar 

  18. M. Hamosh, Biol. Neonate 52: 50 (1987).

    CrossRef  PubMed  CAS  Google Scholar 

  19. L. Thiry, S. Spencer-Goldberger, and T. Jonckheer, Lancet iî: 891 (1985).

    Google Scholar 

  20. S. K. Hira, U. G. Mangrola, C. Mwale, C. G. Chintu, W. E. Brady and P. L. Perine, J. Pediatr. 117: 421 (1990).

    CrossRef  PubMed  CAS  Google Scholar 

  21. K. L. Schnorr and L. D. Pearson, J. Reproduct. Immunol. 6: 329 (1984).

    CrossRef  CAS  Google Scholar 

  22. M. Kmetz, H. W. Dunne, and R. D. Schultz, Amer. J. Veterinary Res. 31: 637 (1970).

    CAS  Google Scholar 

  23. C. A. Alford, Jr. and W. J. Britt, in: “Virology”, G. W. Fields, ed., p. 629, Raven Press, New York (1985).

    Google Scholar 

  24. G. H. Silber, D. L. Hachey, R. J. Schanler, and C. Garza, Amer. J. Clin. Nutr. 47: 810 (1988).

    PubMed  CAS  Google Scholar 

  25. A. Catharine Ross, M. E. Davila, and M. P. Cleary, J. Nutr. 115: 1488 (1985).

    PubMed  CAS  Google Scholar 

  26. R. J. Schanler, R. M. Goldblum, C. Garza, and A. S. Goldman, Ped. Res. 20: 711 (1986).

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Isaacs, C.E., Thormar, H. (1991). The Role of Milk-Derived Antimicrobial Lipids as Antiviral and Antibacterial Agents. In: Mestecky, J., Blair, C., Ogra, P.L. (eds) Immunology of Milk and the Neonate. Advances in Experimental Medicine and Biology, vol 310. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3838-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3838-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6713-0

  • Online ISBN: 978-1-4615-3838-7

  • eBook Packages: Springer Book Archive