Molecular Modelling of Micellar Solutions

  • Sudhakar Puvvada
  • Daniel Blankschtein


We review a recently developed molecular-thermodynamic approach which consists of blending a molecular model of micellization with a thermodynamic theory of phase behavior and phase separation of isotropic micellar solutions. The molecular model incorporates the effects of surfactant molecular architecture and solvent properties on the physical factors which control micelle formation and growth. The approach can predict whether the micelles that form are spheroidal, cylindrical, or disc-like in shape. The approach is also capable of predicting micellar solution properties as a function of surfactant concentration and temperature. These properties include (i) critical micellar concentration, (ii) micellar size distribution and its characteristics, (iii) critical surfactant concentration for the onset of phase separation, and (iv) other thermodynamic properties such as the osmotic compressibility. The molecular- thermodynamic approach provides an accurate description of a wide range of experimental findings in aqueous micellar solutions of nonionic surfactants belonging to the polyoxyethylene glycol monoether family.


Surfactant Concentration Nonionic Surfactant Micellar Solution Aggregation Number Critical Micellar Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For an introduction to the field of micellar solutions and other self-assembling colloidal systems see K.L. Mittal, Editor, “Micellization, Solubilization, and Microemulsions”, Vols. 1 and 2, Plenum Press, New York, 1977.Google Scholar
  2. 2.
    C. Tanford, “The Hydrophobic Effect,” Wiley, New York, 1980.Google Scholar
  3. 3.
    For comprehensive experimental and theoretical surveys of the field of micellar solutions and other self-assembling colloidal systems see (a) K.L. Mittal and B. Lindman, Editors, “Surfactants in Solution,” Vols. 1, 2 and 3, Plenum Press, New York, 1984.Google Scholar
  4. (b).
    V. Degiorgio and M. Corti, Editors, “Physics of Amphiphiles: Micelles, Vesicles and Microemulsions”, North-Holland, Amsterdam, 1985.Google Scholar
  5. 4.
    J.M. Corkill, J.F. Goodman, T. Walker, and J. Wyer, Proc. Royal Soc. London Ser. A, 312, 243 (1969).CrossRefGoogle Scholar
  6. P. Mukerjee, J. Phys. Chem., 76, 565 (1972).CrossRefGoogle Scholar
  7. 5.
    S. Puvvada and D. Blankschtein, J. Chem. Phys., 92, 3710 (1990).CrossRefGoogle Scholar
  8. D. Blankschtein and S. Puwada, MRS Symposium Proceedings, 177, 129 (1990).CrossRefGoogle Scholar
  9. 6.
    J. Israelachvili, “Intermolecular and Surface Forces,” Academic Press, London, 1985.Google Scholar
  10. 7.
    D. Blankschtein, G.M. Thurston, and G. Benedek, J. Chem. Phys., 85, 7268 (1986).CrossRefGoogle Scholar
  11. 8.
    R. Nagarajan and E. Ruckenstein, J. Colloid Interface Sci., 60, 221 (1977); 71, 580 (1979).CrossRefGoogle Scholar
  12. 9.
    J.N. Israelachvili, D.J. Mitchell, and B.W. Ninham, J. Chem. Soc. Faraday Trans. 2, 72, 1525 (1976).Google Scholar
  13. 10.
    E. Vikingstad and H. Holland, J. Colloid Interface Sci., 64, 510 (1978)CrossRefGoogle Scholar
  14. F.F. Nagle and D.A. Wilkinson, Biophys. J., 23, 159 (1978).CrossRefGoogle Scholar
  15. 11.
    F. Podo, A. Ray, and G. Nemethy, J. Am. Chem. Soc., 95, 6164 (1973).CrossRefGoogle Scholar
  16. 12.
    B. Cabane, J. Phys. (Paris), 42, 847 (1981).CrossRefGoogle Scholar
  17. 13.
    J. O’M. Bockris and A.K.N. Reddy, “Modern Electrochemistry,” Vol. 1, Plenum Press, New York, 1977.Google Scholar
  18. 14.
    M.H. Abraham, J. Chem. Soc. Faraday Trans. 1, 80, 153 (1984).Google Scholar
  19. 15.
    A. Fredenslund, R.L. Jones, and J.M. Prausnitz, AIChE. J. 21, 1087 (1975).CrossRefGoogle Scholar
  20. 16.
    W.L. Jorgensen, Acc. Chem. Res. 22, 184 (1989).CrossRefGoogle Scholar
  21. 17.
    R.C. Tolman, J. Chem. Phys., 16, 758 (1948); 17, 333 (1949).CrossRefGoogle Scholar
  22. 18.
    A. Ben-Shaul, I. Szleifer, and W.M. Gelbart, J. Chem. Phys., 83, 3597 (1985)CrossRefGoogle Scholar
  23. I. Szleifer, A. Ben-Shaul, and W.M. Gelbart, J. Chem. Phys., 83, 3612 (1985).CrossRefGoogle Scholar
  24. 19.
    D.W.R. Gruen, J. Phys. Chem., 89, 146, 153 (1985).CrossRefGoogle Scholar
  25. 20.
    A. Ben-Shaul and W.M. Gelbart, Annu. Rev. Phys. Chem., 36, 179 (1985).CrossRefGoogle Scholar
  26. 21.
    R. Fowler and E.A. Guggenheim, “Statistical Thermodynamics,” Cambridge University Press, London, 1965.Google Scholar
  27. 22.
    S. Puwada and D. Blankschtein, to be published (1991).Google Scholar
  28. 23.
    M.J. Sparnaay, Recl. Trav. Chim. Pays-Bas, 77, 872 (1958); 81, 395 (1962).CrossRefGoogle Scholar
  29. 24. a)
    P. Mukerjee and K.J. Mysels, “Critical Micelle Concentration of Aqueous Surfactant Solutions,” Natl. Stand. Ref. Data Ser.-Natl. Bur. Stand. No. 36, US Dept. of Commerce, Washington D.C., 1971.Google Scholar
  30. b).
    P. Becher, in “Nonionic Surfactants,” M.J. Schick, Editor, p. 478, Marcel Dekker, New York, 1967.Google Scholar
  31. c).
    K. Meguro, Y. Takasawa, N. Kawahashi, Y. Tabata, and M. Ueno, J. Colloid Interface Sci., 83, 50 (1981).CrossRefGoogle Scholar
  32. d).
    X. Jiding and H. Zhengyu, in “Surfactants in Solution,”, K.L. Mittal and P. Bothorel, Editors, Vol. 5, p 1055, Plenum Press, New York, 1986.Google Scholar
  33. 25.
    see, for example, V. Degiorgio, in Ref. 3(b), p 303.Google Scholar
  34. 26.
    J.M. Corkill and T. Walker, J. Colloid Interface Sci., 39, 621 (1972).CrossRefGoogle Scholar
  35. W. Brown and R. Rymden, J. Phys. Chem., 91, 3565 (1987).CrossRefGoogle Scholar
  36. 27.
    H. Fujimatsu, S. Ogasawara, and S. Kuroiwa, Colloid Polym. Sci., 266, 594 (1988).CrossRefGoogle Scholar
  37. 28.
    R. Zana and C. Weill, J. Phys. Lett. (Paris), 46, L–953 (1985).CrossRefGoogle Scholar
  38. 29. a)
    B.A. Mulley and A.D. Metcalf, J. Colloid Sci. 17, 523 (1962).CrossRefGoogle Scholar
  39. b).
    J.C. Lang and R.D. Morgan, J. Chem. Phys., 73, 5849 (1980).CrossRefGoogle Scholar
  40. c).
    M. Corti, C. Minero, and V. Degiorgio, J. Phys. Chem., 88, 309 (1984).CrossRefGoogle Scholar
  41. d).
    H. Evans, D.J. Tildesley, and C.A. Leng, J. Chem. Soc. Faraday Trans. 1, 83, 1525 (1987).Google Scholar
  42. e).
    R. Strey and A. Pakusch, in “Surfactants in Solution,” K.L. Mittal and P. Bothorel, Editors, Vol. 4, p 465, Plenum Press, New York, 1986.CrossRefGoogle Scholar
  43. 30.
    G. Briganti, S. Puwada, and D. Blankschtein, submitted to J. Phys. Chem. (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Sudhakar Puvvada
    • 1
  • Daniel Blankschtein
    • 1
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations