Skip to main content

Electron Scattering from Tensor-Polarized Deuterons in the VEPP-3 Electron Storage Ring

  • Chapter
Spin and Isospin in Nuclear Interactions
  • 98 Accesses

Abstract

In the plane wave impulse approximation, the differential cross section for unpolarized elastic electron-deuteron scattering may be written in the familiar Rosenbluth form:

$$ \frac{{d\sigma }}{{d\Omega }} = {\sigma _m}\left[ {A\left( {{Q^2}} \right) + B\left( {{Q^2}} \right){{\tan }^2}\left( {{\raise0.7ex\hbox{$\theta $} \!\mathord{\left/ {\vphantom {\theta 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} \right)} \right] \equiv {\sigma _0} $$
(1)

where σ m is the Mott cross section, and A and B are given in terms of the deuteron charge (G c ), quadrupole (G q ) and magnetic (G m ) form factors:

$$ A\left( {{Q^2}} \right) = G_c^2 + \left( {8{\tau ^2}/9} \right)G_q^2 + \left( {2\tau /3} \right)G_m^2{\text{ }}B\left( {{Q^2}} \right) = 4\tau \left( {1 + \tau } \right)G_m^2/3 $$
(2)

with Q 2 the square of the 4-momentum transfer and τ = Q 2/4m 2 d . Thus, a Rosenbluth separation may be used to extract A and B (and hence G m ) from scattering data, but G c and G q are not separated. To isolate these form factors requires the use of polarization techniques. Following the Madison convention1, the scattering of unpolarized electrons from a tensor polarized deuteron is described by the cross section:2

$$ \frac{{d\sigma }}{{d\Omega }} = {\sigma _0}\left[ {1 + {T_{20}}{t_{20}} + 2{T_{21}}\operatorname{Re} \left( {{t_{21}}} \right) + 2{T_{22}}\operatorname{Re} \left( {{t_{22}}} \right)} \right] $$
(3)

in which T 2i and t 2i are, respectively, the components of the analyzing power and polarization tensors in a spherical basis. For moderate momentum transfers and suitably chosen polarization directions, the terms involving T 21 and T 22 are small, and may be ignored for the moment. The tensor analyzing power, T 20, is given by:

$$ {T_{20}} = - \sqrt 2 \left[ {X\left( {X + 2} \right) + {Y \mathord{\left/ {\vphantom {Y 2}} \right. \kern-\nulldelimiterspace} 2}} \right]/\left[ {2\left( {{X^2} + 1} \right) + 1} \right]{\text{ }}X = \frac{2}{3}\tau \left( {\frac{{{G_q}}}{{{G_c}}}} \right){\text{ }}Y = \frac{1}{3}\tau {\left( {\frac{{{G_m}}}{{{G_c}}}} \right)^2}\left[ {1 + 2\left( {1 + \tau } \right){{\tan }^2}\left( {{\raise0.7ex\hbox{$\theta $} \!\mathord{\left/ {\vphantom {\theta 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}} \right)} \right] $$
(4)

while the tensor polarization, t 20, is:

$$ {t_{20}} = {p_{zz}}{P_2}\left( {\hat n \cdot \hat q} \right)/\sqrt 2 $$
(5)

in which P 2 is the second Legendre polynomial, \( \hat n \) is the polarization direction, \( \hat n \) is the momentum transfer direction, and p zz , the polarization in a cartesian basis, is 1 — 3 n 0, with n 0 being the fraction of deuterons with zero spin projection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of the Third International Symposium on Polarization Phenomena in Nuclear Reactions, Madison, Wisconsin, 1970, edited by H. H. Barschall and W. Haeberli, p. xxv.

    Google Scholar 

  2. T. W. Donnelly and A. S. Raskin, Ann. Phys. (N.Y.) 169, 247 (1986); V. F. Dmitriev, S. G. Popov and, D. K. Toporkov, Institute of Nuclear Physics, Novosibirsk, Report No. 76–85, 1976 (unpublished).

    Google Scholar 

  3. S. Platchkov, et al., Nucl. Phys. A510, 740 (1990).

    ADS  Google Scholar 

  4. R. Cramer, et al., Z. Phys. C 29, 513 (1985).

    Article  ADS  Google Scholar 

  5. R. Arnold, et al., Phys. Rev. Lett. 35, 776 (1975).

    Article  ADS  Google Scholar 

  6. S. Auffret, et al., Phys. Rev. Lett. 54, 649 (1985).

    Article  ADS  Google Scholar 

  7. R. G. Arnold, et al., Phys. Rev. Lett. 58, 1723 (1987).

    Article  ADS  Google Scholar 

  8. M. E. Schulze, et al., Phys. Rev. Lett. 52, 597 (1984).

    Article  ADS  Google Scholar 

  9. V. F. Dmitriev, et al., Phys. Lett. 157B, 143 (1985); B. B. Wojtsekhowski, et al., Pis’ma Zh. Eksp. Teo. Fiz. 43, 567 (1986) [JETP Lett. 43, 733 (1986)].

    Google Scholar 

  10. R. Schiavilla and D. O. Riska, Phys. Rev. C 43, 437 (1991).

    Article  ADS  Google Scholar 

  11. P. G. Blunden, et al., Phys. Rev. C 40, 1541 (1989).

    Article  ADS  Google Scholar 

  12. R. Dymarz and F. C. Khanna, Nucl. Phys. A507, 560 (1994

    ADS  Google Scholar 

  13. E. Hummel and J. A. Tjon, Phys. Rev. Lett. 63, 1788 (1989).

    Article  ADS  Google Scholar 

  14. P. L. Chung itet al., Phys. Rev. C 37, 2000 (1988).

    Article  ADS  Google Scholar 

  15. C. Carlson, Nucl. Phys. A508, 481c (1990).

    ADS  Google Scholar 

  16. R. Gilman et al., Phys. Rev. Lett. 65, 1733 (1991).

    Article  ADS  Google Scholar 

  17. A. V. Evstigneev, S. G. Popov and D. K. Toporkov, Nucl. Instrum. Methods Phys. Res., Sect. A 238, 12 (1985).

    Article  ADS  Google Scholar 

  18. L. Young et al., Nucl. Instrum. Methods Phys. Res., Sect. B 24/25, 963 (1987); D. R. Swenson and L. W. Anderson, Nucl. Instrum. Methods Phys. Res., Sect. 29, 627 (1988).

    Google Scholar 

  19. B. B. Wojtsekhowski et al., Institute of Nuclear Physics, Novosibirsk, Report No. 88–120 (to be published).

    Google Scholar 

  20. I. The, et al., Phys. Rev. Lett. 67 173 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potterveld, D.H. (1991). Electron Scattering from Tensor-Polarized Deuterons in the VEPP-3 Electron Storage Ring. In: Wissink, S.W., Goodman, C.D., Walker, G.E. (eds) Spin and Isospin in Nuclear Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3834-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3834-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6711-6

  • Online ISBN: 978-1-4615-3834-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics