Skip to main content

Deep Inelastic Scattering of Leptons and Tests of Quark/Parton Models

  • Chapter
Spin and Isospin in Nuclear Interactions
  • 96 Accesses

Abstract

In this paper we will review the information which can be obtained from deep inelastic scattering (DIS) of leptons from hadrons. As is well known, it was through DIS that one was able to infer that nucleons are made up of apparently pointlike elementary constituents.1 The latest Nobel Prize in Physics was awarded to Friedman, Kendall and Taylor for their leadership in these experiments. Since this time very detailed experiments have been carried out on both nucleon and nuclear targets, using either charged leptons (electrons or muons) or neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.I. Friedman and H. Kendall, Ann. Rev. Nucl. Part. Sci. 22, 203 (1972).

    Article  ADS  Google Scholar 

  2. S.R. Mishra and F. Sciulli, Ann. Rev. Nucl. Part. Sci. 39, 259 (1989).

    Article  ADS  Google Scholar 

  3. Proceedings of the Workshop on Hadron Structure Functions and Parton Distributions, eds. D.F. Geesaman, J. Morfin, C. Sazama, and W.K. Tung (World Scientific, Singapore, 1990).

    Google Scholar 

  4. A.J. Buras, Rev. Mod. Phys. 52, 199 (1980).

    Article  ADS  Google Scholar 

  5. J.D. Bjorken, Phys. Rev. 179, 1547 (1969).

    Article  ADS  Google Scholar 

  6. C. Callan and D. Gross, Phys. Rev. Lett. 22, 156 (1969).

    Article  ADS  Google Scholar 

  7. We neglect here the possibility that structure functions in nuclei are likely to differ from structure functions measured on free nucleons.

    Google Scholar 

  8. With leading-order QCD corrections the Callan-Gross relation F 2 (x,Q 2) = 2xF1(x,Q 2) is maintained. However, higher order QCD corrections modify this relation. We can then define the quark densities as satisfying Eq. (2.5) for F 2; we then use the QCD-corrected formula Eq. (4.5) to express F 1 in terms of the experimentally measured R.

    Google Scholar 

  9. A. Bodek et al., Phys. Rev. D 20, 1471 (1979).

    ADS  Google Scholar 

  10. EM Collaboration, J.J. Aubert et al., Nucl. Phys. B259, 179 (1985).

    Google Scholar 

  11. BCDMS Collaboration, A.C. Benvenuti et al., Phys. Rev. Lett. B195, 97 (1987).

    Google Scholar 

  12. A. Milsztajn, A. Staude, K.M. Teichert, M. Virchaux and R. Voss, preprint CERN-PPE 190–135 (Sept. 1990).

    Google Scholar 

  13. WA-21 Collaboration, G.T. Jones et al., Preprint 87, Rec. Jul. (1987).

    Google Scholar 

  14. WA-25 Collaboration, D. Allasia et al., Phys. Lett. B135, 231 (1984); Z. Phys. C28, 321 (1985).

    Google Scholar 

  15. CDHS Collaboration, H. Abramowicz et al., Z. Phys. C25, 29 (1984).

    ADS  Google Scholar 

  16. CDHSW Collaboration, P. Berge, et al., A. Phys. C35, 443 (1987).

    ADS  Google Scholar 

  17. CCFR Collaboration, W.H. Smith et al., Proc. 14th Int. Conf. on Neutrino Physics and Astrophysics, CERN, Geneve, June 1990, to be published.

    Google Scholar 

  18. D.J. Gross and C.J. Llewellyn Smith, Nucl. Phys. B14, 337 (1969).

    Article  ADS  Google Scholar 

  19. Most recent global fits to quark/parton distribution functions have been carried out using the next to leading order QCD coupling constant, in the minimal subtraction [MS] scheme, as described in Ref. 4 and 20.

    Google Scholar 

  20. W-K. Tung, in Ref. 3.

    Google Scholar 

  21. B.A. Iijima, MIT preprint CTP-993 (1983, unpublished).

    Google Scholar 

  22. R.L. Jaffe, personal communication.

    Google Scholar 

  23. P.N. Harriman, A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. Rev. D42, 798 (1990).

    ADS  Google Scholar 

  24. M. Diemoz, F. Ferroni, E. Longo and G. Martinelli, Z. Phys. C39, 21 (1988).

    ADS  Google Scholar 

  25. P. Aurenche, R. Baier, M. Fontannaz, J. F. Owens and M. Werlen, Phys. Rev. D39, 3275 (1989).

    ADS  Google Scholar 

  26. J. G. Morfin and W-K. Tung, Preprint Fermilab-Pub-90/24, IIT-90–11, and J. G. Morfin, in Ref. 3.

    Google Scholar 

  27. NM Collaboration, P. Amaudruz et al., CERN-PPR/91–05, submitted to Phys. Rev. Lett.

    Google Scholar 

  28. W.A. Bardeen, A.J. Buras, D.W. Duke, and T. Muta, Phys. Rev. D18, 3998 (1978).

    ADS  Google Scholar 

  29. D.A. Ross and C.T. Sachradja, Nucl. Phys. B149, 497 (1979).

    Article  ADS  Google Scholar 

  30. A.D. Martin, R.G. Roberts, and W.J. Stirling, Phys. Lett. B208, 327 (1988); Phys. Rev. D37, 1161 (1988).

    Google Scholar 

  31. E.M. Henley and G.A. Miller, Phys. Lett. B251, 453 (1990).

    ADS  Google Scholar 

  32. A. Signal, A.W. Schreiber, and A.W. Thomas, Mod. Phys. Lett. A6, 271 (1991).

    ADS  Google Scholar 

  33. S. Kumano and J.T. Londergan, preprint IU/NTC 90–16, to be published, Phys. Rev. D; S. Kumano, Phys. Rev. D43, 59 (1991); to be published in Phys. Rev. D43 (1991).

    Google Scholar 

  34. J.D. Sullivan, Phys. Rev. D5, 1732 (1972).

    ADS  Google Scholar 

  35. W-Y. P. Hwang, J. Speth and G.E. Brown, Jülich preprint (Z. Phys. A, to be published).

    Google Scholar 

  36. S.D. Drell and T.M. Yan, Ann. Phys. 66, 595 (1991).

    Google Scholar 

  37. R.D. Field, Applications of Perturbative QCD (Addison-Wesley, 1989).

    Google Scholar 

  38. J. Levelt, P.J. Mulders, and A.W. Schreiber, preprint NIKHEF-91-P5 (1991).

    Google Scholar 

  39. M.J. Algurd et al., Phys. Rev. Lett. 37, 1261 (1978); 41, 70 (1978).

    Google Scholar 

  40. EM Collaboration, J. Ashman et al., Phys. Lett. B206, 364 (1988).

    ADS  Google Scholar 

  41. P. Hoodbhoy, R.L. Jaffe, and A. Manohar, Nucl. Phys. B312, 571 (1989).

    Article  ADS  Google Scholar 

  42. F.E. Close and S. Kumano, Phys. Rev. 42, 2377 (1990).

    ADS  Google Scholar 

  43. J.D. Bjorken, Phys. Rev. 148, 1467 (1966).

    Article  ADS  Google Scholar 

  44. N. Isgur, in Physics with Polarized Beams on Polarized Targets, eds. J. Sowinski and S.E. Vigdor, (World Scientific, 1990).

    Google Scholar 

  45. J. Ellis and R.L. Jaffe, Phys. Rev. D9, 1444 (1974).

    ADS  Google Scholar 

  46. D.C. Cheng and G.K. O’Neill, Elementary Particle Physics, (Addison-Wesley, 1979).

    Google Scholar 

  47. SMC Collaboration proposal to CERN.

    Google Scholar 

  48. HERMES Collaboration proposal at HERA: see R. McKeown talk at this conference.

    Google Scholar 

  49. F.E. Close and R.G. Roberts, Phys. Rev. Lett. 60, 1471 (1988).

    Article  ADS  Google Scholar 

  50. D.B. Kaplan and A. Manohar, Nucl. Phys. B310, 527 (1988).

    Article  ADS  Google Scholar 

  51. L.H. Ahrens et al., Phys. Rev. D35, 785 (1987).

    ADS  Google Scholar 

  52. D.H. Beck, Phys. Rev. D39, 3248 (1989); SAMPLE Collaboration proposal to Bates.

    Google Scholar 

  53. A.V. Efremov and O.V. Teryaev, Dubna preprint E2–88–287 (1988).

    Google Scholar 

  54. G. Altarelli and G.G. Ross, Phys. Lett. B212, 391 (1988).

    ADS  Google Scholar 

  55. R.D. Carlitz et al., Phys. Lett. B214, 229 (1988).

    ADS  Google Scholar 

  56. G. Bodwin and J. Qiu, Phys. Rev. D41, 2755 (1990).

    ADS  Google Scholar 

  57. R.L. Jaffe and A.V. Manohar, Nucl. Phys. B337, 509 (1990).

    Article  ADS  Google Scholar 

  58. A.V. Manohar, Phys. Rev. Lett. 66, 289 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  59. M. Glück and E. Reya, Z. Phys. C43, 678 (1989).

    ADS  Google Scholar 

  60. J. Kodaira et al., Phys. Rev. D20, 627 (1979); Nucl. Phys. B159, 99 (1979); J. Kodaira, Nucl. Phys. B165, 129 (1980).

    Google Scholar 

  61. A.W. Schreiber, A.W. Thomas and J.T. Londergan, Phys. Rev. D42, 2226 (1990).

    ADS  Google Scholar 

  62. G.A. Miller et al., Phys. Lett. B91, 192 (1980); A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1983) and references therein; see N.A. Thornqvist, Phys. Lett. B221, 701 (1989).

    Google Scholar 

  63. G.E. Brown and M. Rho, Phys. Lett. B82, 177 (1979).

    ADS  Google Scholar 

  64. Meng Ta-Chung et al., Phys. Rev. D40, 769 (1989).

    ADS  Google Scholar 

  65. S. Brodsky el al., Phys. Lett. B206, 309 (1988); J. Ellis and M. Karliner, Phys. Lett. B213, 731 (1988).

    Google Scholar 

  66. K. Wilson, Phys. Rev. 179, 1499 (1969); see also Ref. 4.

    Article  MathSciNet  ADS  Google Scholar 

  67. G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

    Article  ADS  Google Scholar 

  68. W.K. Tung, in Ref. 3.

    Google Scholar 

  69. H. Georgi and H.D. Politzer, Phys. Rev. D14, 1829 (1976); A. de Rujula et al., Phys. Rev. D15, 2495 (1977); R. Barbieri et al., Phys. Lett. B64, 171 (1976); see also Ref. 4.

    Google Scholar 

  70. M.D. Mestayer et al., Phys. Rev. D27, 285 (1983).

    ADS  Google Scholar 

  71. S. Dasu et al., Phys. Rev. Lett. 61, 1061 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Londergan, J.T., Kumano, S. (1991). Deep Inelastic Scattering of Leptons and Tests of Quark/Parton Models. In: Wissink, S.W., Goodman, C.D., Walker, G.E. (eds) Spin and Isospin in Nuclear Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3834-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3834-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6711-6

  • Online ISBN: 978-1-4615-3834-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics