Descriptive and Experimental Embryology of the Turbellaria: Present Knowledge, Open Questions and Future Trends

  • Jaume Baguñà
  • Barbara C. Boyer
Part of the NATO ASI Series book series (NSSA, volume 195)


The Turbellaria are acoelomate, triploblastic, unsegmented and bilaterally symmetrical animals, with distinct anteroposterior polarity expressed in head, trunk and tail regions that are not markedly distinguishable. With the exception of the Acoela, which have a solid mass of digestive tissue, the Turbellaria are characterized by a pharynx and a blind gut (no anus). Circulatory and respiratory organs are absent, and excretory organs consist of protonephridia. A solid mass of tissue, called mesenchyme or parenchyma fills the space between the cellular, monoestratified, ciliated epidermis and the gut and surrounds the internal organs. It consists of several non proliferating differentiated cell types and a particular class of undifferentiated mitotic cells usually called neoblasts (for a quantitative analysis of cell types, see Baguña and Romero, 1981; Romero, 1987).


Definitive Endoderm Experimental Embryology Yolk Cell Embryonic Ectoderm Spiral Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.T., 1977, The embryonic and larval development of the turbellarian Notoplana australis (Schmarde, 1859) (Polycladida; Leptoplanidae), Aust. J. Mar. Freshwater Res., 28: 303–310.CrossRefGoogle Scholar
  2. Apelt, G., 1969, Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien, Mar. Biol., 4: 267–325.Google Scholar
  3. Ax, P., 1987, “The Phylogenetic System,” John Wiley & Sons, Chichester.Google Scholar
  4. Ax, P., and Dörjes, J., 1966, Oligochoerus limnophilus nov. spec, ein kaspisches Faunenelement als erster Süsswasservertreter der Turbellaria Acoela in Flüssen, Mitteleuropas, Int. Rev. ges. Hydrobiol., 57: 15–144.CrossRefGoogle Scholar
  5. Baguñà, J., 1973, Estudios citotaxonómicos, ecológicos e histofisiologia de 1a regulación morfogenética durante el crecimiento y 1a regeneración de 1a raza asexuada de 1a planaria Dugesia mediterranea n. sp. Ph. D. Thesis, University of Barcelona.CrossRefGoogle Scholar
  6. Baguñà, J., 1981, Planarian neoblast, Nature, 290: 14–15.CrossRefGoogle Scholar
  7. Baguñà, J., and Romero, R., 1981, Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia (S) mediterranea and Dugesia (G) tigrina, Hydrobiologia, 84: 181–194.CrossRefGoogle Scholar
  8. Baguñà, J., Saló, E., Collet, J., Auladell, M.C., and Ribas, M., 1988, Cellular, molecular and genetic approaches to regeneration and pattern formation in planarians, Fortschr.Zool., 36: 65–78.Google Scholar
  9. Ball, S.C., 1916, The development of Paravortex gemellipara (Graffilia gemellipara Linton), J. Morphol., 27: 453–558.CrossRefGoogle Scholar
  10. Barnes, R.D., 1968, “Invertebrate Zoology,”Saunders, Philadelphia.Google Scholar
  11. Barnes, R.S.K., Calow, P., and Olive, P.J.W., 1988, “The Invertebrates: a new synthesis,” Blackwell, Oxford.Google Scholar
  12. Beauchamp, P. de, 1961, Classe des Turbellariés: Turbellaria (Ehrenberg,1831), in: “Traité de Zoologie,” Vol.4, 1:35–212, Masson, Paris.Google Scholar
  13. Benazzi, M., and Gremigni, V., 1982, Developmental biology of triclad turbellarians (Planaria), in: “Developmental Biology of Freshwater Invertebrates,” pp 151–211, Harrison, F.H., and Cowden, R.R., eds Alan R. Liss, New York.Google Scholar
  14. Bogomolov, S.I., 1960, The development of Convoluta in connection with the morphology of the turbellarians, Trudy Obshch. Estest. Kazan. Gos. Univ., 63: 155–208 (in Russian).Google Scholar
  15. Boyer, B.C., 1971, Regulative development in a spiralian embryo as shown by cell deletion experiments on the acoel Childia, J. Exp. Zool., 176: 97–106.CrossRefGoogle Scholar
  16. Boyer, B.C., 1986, Determinative development in the polyclad turbellarian Hoploplana inquilina, Int. J. Invertebr. Reprod. and Develpt., 9: 243–251.CrossRefGoogle Scholar
  17. Boyer, B.C., 1987, Development of in vitro fertilized embryos of the polyclad flatworm Hoploplana inquilina following blastomere separation and deletion, Roux’s.Archiv Dev. Biol., 196: 158–164.CrossRefGoogle Scholar
  18. Boyer, B.C., 1988, The effects if removing vegetal cytoplasm during the maturation divisions on the development of Hoploplana inquilina (Turbellaria, Polycladida), Fortschr. Zool., 36: 277–282.Google Scholar
  19. Boyer, B.C., 1988, The effects if removing vegetal cytoplasm during the maturation divisions on the development of Hoploplana inquilina (Turbellaria, Polycladida), Fortschr. Zool., 36: 277–282.Google Scholar
  20. Boyer, B.C., Arnold, J.M., and Landolfa, M., 1988, Origins of mosaic development.: Zygote surface differentiation during meiosis in the polyclad flatworm Hoploplana, Int. J. Invertebr. Reprod. and Develpt., 13: 157–170.CrossRefGoogle Scholar
  21. Boyer, B.C., Arnold, J.M., and Landolfa, M., 1988, Origins of mosaic development.: Zygote surface differentiation during meiosis in the polyclad flatworm Hoploplana, Int. J. Invertebr. Reprod. and Develpt., 13: 157–170.CrossRefGoogle Scholar
  22. Bresslau, E., 1904, Beiträge zur Entwicklungsgeschichte der Turbellarien. I. Die Entwicklung der Rhabdocölen und Alloiocölen, Z. wiss. Zool., 76: 213–332.Google Scholar
  23. Cameron, R.A., Hough-Evans, B.R., Britten, R.J., and Davidson, E.H., 1987, Lineage and fate of each blastomere of the eight-cell sea urchin embryo, Genes. Dev., 1: 75–84.PubMedCrossRefGoogle Scholar
  24. Campos-Ortega, J.A., and Hartenstein, V., 1985, “The Embryonic Development of Drosophila melanogaster,” Springer-Verlag, Berlin.Google Scholar
  25. Costello, D.P., and Henley, C., 197 6, Spiralian development: a perspective, Amer. Zool., 16: 277–291.Google Scholar
  26. Crezée, M., 1982, Turbellaria, in; “Synopsis and Classification of Living Organisms,” Parker, S.P. ed. McGraw-Hill, New York, 1: 718–740.Google Scholar
  27. Davidson, E.H., 1986, “Gene Activity in Early Development,” Academic Press, New York.Google Scholar
  28. Dawydoff, C., 1928, “Traité d’Embryologie Comparée des Invertébrés,” Masson, Paris.Google Scholar
  29. Ehlers, U., 1984, Phylogenetisches System der Plathelminthes, Verh. Naturwiss. Ver. Hamburg (N.F.), 27: 291–294.Google Scholar
  30. Ehlers, U., 1985, “Das Phylogenetische System der Plathelminthes,” G. Fischer, Stuttgart.Google Scholar
  31. Ehlers, U., 1986, Comments on a phylogenetic system of the Platyhelminthes, Hydrobiologia, 132: 1–12.CrossRefGoogle Scholar
  32. Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R., and Raff, R.A., 1988, Molecular phylogeny of the animal kingdom, Science, 239: 748–753.PubMedCrossRefGoogle Scholar
  33. Gardner, R.L., and Lawrence, P.A. eds, 1986, “Single Cell Marking and Cell Lineage in Animal Development,”The Royal Society, London.Google Scholar
  34. Giesa, S., 1966, Die Embryonalentwicklung von Monocelis fusca Oersted (Turbellaria, Proseriata), Z. Morphol. Okol. Tiere, 57: 137–230.CrossRefGoogle Scholar
  35. Gremigni, V., 1988, A comparative ultrastructural study of homocellular and heterocellular female gonads in free-living Platyhelminthes-Turbellaria, Fortschr. Zool., 36: 245–261.Google Scholar
  36. Hendelberg, J., 1974, Spermiogenesis, sperm morphology, and biology of fertilization in the Turbellaria, in: “Biology of the Turbellaria,”Riser, N.W., and Morse, M.P. eds, McGraw-Hill, New York, 148–164Google Scholar
  37. Hendelberg, J., 1986, The phylogenetic significance of sperm morphology in the Platyhelminthes, Hydrobiologia, 132: 53–58.CrossRefGoogle Scholar
  38. Henley, C., 1974, Platyhelminthes (Turbellaria), in: “Reproduction of Marine Invertebrates,” Vol 1, Giese, A.C., and Pearse, J.S. eds., Acad. Press, New York, 267–343.Google Scholar
  39. Henning, W., 1966, “Phylogenetic Systematics,” University of Illinois Press, Chicago.Google Scholar
  40. Ho, R.K., and Weisblat, D.A., 1987, A provisional epithelium in leech embryo: cellular origins and influence on a developmental equivalence group, Dev. Biol., 120: 520–534.PubMedCrossRefGoogle Scholar
  41. Hori, H.A., Muto, A., Osawa, S., Takai, M., Lue, K.Y., and Kawakatsu, M., 1988, Evolution of Turbellaria as deduced from 5S ribosomal RNA sequences, Fortschr. Zool., 36: 163–168.Google Scholar
  42. Hyman, L.H., “The Invertebrates: Platyhelminthes and Rhynchocoela,” Vol. II, McGraw-Hill, New York.Google Scholar
  43. Ivanova-Kasas, O.M., 1982, Phylogenetic significance of spiral cleavage, in: “Evolutionary Embryology,” Plenum Press (translated from Biologiya Morya, 5: 3–14, in russian).Google Scholar
  44. Kaestner, A., 1984, “Lehrbuch der Speziellen Zoologie,” Vol. I. G. Fischer, Stuttgart.Google Scholar
  45. Karling, T.G., 1974, On the anatomy and affinities of the turbellarian orders, in: “Biology of the Turbellaria,” Riser, N.W., and Morse, M.P. eds, McGraw-Hill, New York.Google Scholar
  46. Kato, K., 1940, On the development of some Japanese polyclads, Japan. J. Zool., 8: 537–573.Google Scholar
  47. Kato, K., 1968, Platyhelminthes (Class Turbellaria), in: “Invertebrate Embryology,” Kume, M., and Dan, K., eds, Nolit, Belgrade.Google Scholar
  48. Le Moigne, A., 1963, Etude du développement embryonnaire de Polycelis nigra (Turbellarié, Triclade), Bull. Soc. Zool. Fr., 88: 403–422.Google Scholar
  49. Reisinger, E., Cichocki, J., Erlach, R., and Szyskowitz, T., 1974, Ontogenetische Studien an Turbellarien: ein Beitrag zur Evolution der Dotterverarbeitung imGoogle Scholar
  50. ektolecithalen Ei. I. Teil, Z. zool. Syst. Evolut.-forsch., 12: 161–195.Google Scholar
  51. Romero, R., 1987, Anàlisi cel.lular quantitativa del creixement i de 1a reproducció a diferentes espècies de planàries, Ph. D. Thesis, University of Barcelona.Google Scholar
  52. Saló, E., and Baguñà, J., 1984, Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrana, and a new proposal for blastema formation, J. Embryo1. exp. Morph., 83: 63–80.Google Scholar
  53. Saló, E., and Baguñà, J., 1989, Regeneration and pattern formation in planarians. II. Local origin and role of cell movements in blastema formation, Development, 107: 69–76.Google Scholar
  54. Seiler-Aspang, F., 1957, Die Entwicklung von Macrostomum appendiculatum (Fabricius), Zool. Jb. Anat., 76: 311–330.Google Scholar
  55. Seiler-Aspang, F., 1958, Entwicklungsgeschichtliche Studien an Paludicolen Tricladen, W. Roux’s Arch., 150: 425–480.CrossRefGoogle Scholar
  56. Shimizu, T., 1982, Development in the freshwater oligochaete Tubifex, in: “Developmental Biology of Freshwater Invertebrates,” Harrison, F.H., and Cowden, R.R. eds, Alan R. Liss, New York, pp 283–316.Google Scholar
  57. Skaer, R.J., 1971, Planarians, in: “Experimental Embryology of Marine and Freshwater Invertebrates,” Reverberi, G. ed., North-Holland, Amsterdam, pp 104–125.Google Scholar
  58. Smith, J.P.S., Tyler, S., and Rieger, R.M., 1986, Is the Turbellaria polyphyletic ?, Hydrobiologia, 132: 13–21.CrossRefGoogle Scholar
  59. Smith, J.C., Dale, L., and Slack, J.M.W., 1985, Cell lineage labels and region-specific markers in the analysis of inductive interactions, J. Embryol. exp. Morph., 89; Supplement: 317–331.Google Scholar
  60. Steinböck, O., 1966, Die Hofsteniiden (Turbellaria Acoela). Grundsätzliches zur Evolution der Turbellarien, Z. zool. Syst. Evolut. -forsch, 4: 58–195.Google Scholar
  61. Surface, F.M., 1907, The early development of a polyclad, Planocera inquilina, Proc. Acad. nat. Sci. Philad., 59: 514–559.Google Scholar
  62. Teshirogi, W., Ishida, S., and Jatani, K., 1981, On the early development of some Japanese polyclads, Rep. Fukaura. Mar. Biol. Lab., 9: 2–31 (in Japanese).Google Scholar
  63. Thomas, M.B., 1986, Embryology of the Turbellaria and its phylogenetic significance, Hydrobiologia, 132: 105–115.CrossRefGoogle Scholar
  64. Weisblat, D.A., Kim, S.Y., and Stent, G.S., 1984, Embryonic origins of cells in the leech Helobdella triserialis, Dev. Biol., 104: 65–85.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jaume Baguñà
    • 1
  • Barbara C. Boyer
    • 2
    • 3
  1. 1.Departament de Genètica, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of Biological SciencesUnion College, SchenectadyNew YorkUSA
  3. 3.Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations