Polarized Electroproduction and the Spin of the Quarks Inside the Proton

  • G. Altarelli
Part of the The Subnuclear Series book series (SUS, volume 27)


Deep inelastic leptoproduction has played a fundamental rôle in the development of the QCD-improved parton model. This set of processes is important because of its simplicity. The processes are initiated by leptons (with no strong interactions) and are totally inclusive in the hadronic final state. As is also the case for the total hadronic e+e cross-section at large centre-of-mass energy Q, these properties make a very clean theoretical approach possible for leptoproduction in the deep inelastic region. But leptoproduction has a much richer structure than the hadronic e+e cross-section. First, there are a number of structure functions for each process and several processes are induced by different lepton beams. Then, the structure functions depend on two variables, the squared four-momentum transfer at the lepton vertex q2 = −Q2 < 0 and the Bjorken variable x = Q2/2(pq) with p μ being the nucleon target four-momentum (0 ≤ x ≤ 1). Thus while the hadronic e+e cross-section is one single function of Q2 the leptoproduction structure functions are several functions of both x and Q2: a much wider theoretical laboratory. Over the years the experimental study of unpolarized deep inelastic scattering has led to the determination of the different parton densities in the nucleon and of their Q2 evolution in good agreement with the parton model and QCD.


Structure Function Deep Inelastic Scattering Constituent Quark Gluon Density Skyrme Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ashman et al. (EMC Collaboration), Phys.Lett. B206 (1988), 364; CERN-EP 89-73 (1989).CrossRefGoogle Scholar
  2. 2.
    G. Baum et al., Phys.Rev.Lett. 51 (1983), 1135CrossRefGoogle Scholar
  3. See also: V.W. Hughes et al., Phys.Lett. B212 (1988), 511.CrossRefGoogle Scholar
  4. 3.
    G.G. Ross, Proc. XIV Int. Symposium on Lepton and Photon Interactions, Stanford, 1989, and references therein.Google Scholar
  5. 4.
    F.E. Close and R.G. Roberts, Phys.Rev.Lett. 60 (1988), 1471.CrossRefGoogle Scholar
  6. 5.
    J.D. Bjorken, Phys.Rev. 148 (1966), 1467, Phys.Rev. D1 (1971), 1376.CrossRefGoogle Scholar
  7. 6.
    M. Bourquin et al., Z.Phys. C21 (1983), 27.Google Scholar
  8. 7.
    J. Ellis and R.L. Jaffe, Phys.Rev. D9 (1974), 1444, Erratum D10 (1974), 1669.Google Scholar
  9. 8.
    G. Parisi and R. Petronzio, Phys.Lett. 62B (1976), 331CrossRefGoogle Scholar
  10. V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, JETP Lett. 24 (1976), 342, Ann.Phys. 105 (1977), 276Google Scholar
  11. M. Gluck and E. Reya, NucI.Phys. B130 (1977), 76CrossRefGoogle Scholar
  12. M. Gluck, R.M. Godbole and E. Reya, Z.Phys. C41 (1989), 667Google Scholar
  13. M. Gluck, R.M. Godbole and E. Reya, Univ. Dortmund Preprint DO-TH 88/18 (to appear in Phys.Rev.D).Google Scholar
  14. 9.
    G. Altarelli and G. Parisi, NucI.Phys. B126 (1977), 298.CrossRefGoogle Scholar
  15. 10.
    G. Altarelli, Physics Reports 81 (1982), 1.CrossRefGoogle Scholar
  16. 11.
    M. Anselmino, B.L. Ioffe and E. Leader, NSF-ITP-88-94 (Submitted to Sov. J.Nucl. Phys.).Google Scholar
  17. 12.
    B.L. Ioffe, V.A. Khoze and L.N. Lipatov, Hard Processes, Vol. I, North Holland, Amsterdam (1984).Google Scholar
  18. 13.
    S.D. Drell and A.C. Hearn, Phys.Rev.Lett. 16 (1966), 908CrossRefGoogle Scholar
  19. S.B. Gerasimov, Yad.Fiz. 2 (1965), 598.Google Scholar
  20. 14.
    G. Baum et al., Phys.Rev.Lett. 45 (1980), 2000.CrossRefGoogle Scholar
  21. 15.
    E. Bloom and E. Gilman, Phys.Rev.Lett. 25 (1970), 1140.CrossRefGoogle Scholar
  22. 16.
    A.V. Efremov and O.V. Teryaev, Dubna Preprint E2-88-287 (1988).Google Scholar
  23. 17.
    G. Altarelli and G.G. Ross, Phys.Lett. B212 (1988), 391.CrossRefGoogle Scholar
  24. 18.
    S.L. Adler, Phys.Rev. 177 (1969), 2426CrossRefGoogle Scholar
  25. 19.
    J.S. Bell and R. Jackiw, Nuovo Cimento A51 (1969), 47.CrossRefGoogle Scholar
  26. S.J. Brodsky, J. Ellis and M. Karliner, Phys.Lett. B206 (1988), 309.CrossRefGoogle Scholar
  27. 20.
    T.H.R. Skyrme, Proc.Roy.Soc. A260 (1961), 127CrossRefGoogle Scholar
  28. E. Witten, Nucl.Phys. B228 (1983), 422, 433CrossRefGoogle Scholar
  29. G. Adkins, C. Nappi and E. Witten, Nucl.Phys. B228 (1983), 552.CrossRefGoogle Scholar
  30. 21.
    G. Altarelli and W.J. Stirling, Particle World 1 (1989), 40.Google Scholar
  31. 22.
    M.A. Ahmed and G.G. Ross, Nucl.Phys. B111 (1976), 441CrossRefGoogle Scholar
  32. K. Sasaki, Progr.Theor.Phys. 54 (1980), 1816.CrossRefGoogle Scholar
  33. 23.
    J. Kodaira, Nucl.Phys. B165 (1980), 129CrossRefGoogle Scholar
  34. See also: J. Kodaira et al., Phys.Rev. D20 (1979), 627, Nucl.Phys. B159 (1979), 99.Google Scholar
  35. 24.
    R.L. Jaffe, Phys.Lett. B193 (1987), 101.CrossRefGoogle Scholar
  36. 25.
    R.D. Carlitz, J.C. Collins and A.H. Mueller, Phys.Lett. B214 (1988), 229.CrossRefGoogle Scholar
  37. 26.
    A.D. Watson, Z.Phys. C12 (1982), 123.Google Scholar
  38. 27.
    R.L. Jaffe and A. Manohar, MIT Preprint CTP 1706 (November 1989).Google Scholar
  39. 28.
    G.T. Bodwin and J. Qiu, Argonne Preprint ANL-HEP-PR-89-83 (1989).Google Scholar
  40. 29.
    T.P. Cheng and L.F. Li, Phys.Rev.Lett. 62 (1989), 1441; CMU-HEP-90-2 (1990).CrossRefGoogle Scholar
  41. 30.
    T. Hatsuda, Nucl.Phys. B329 (1990), 376.CrossRefGoogle Scholar
  42. 31.
    G. Veneziano, Mod.Phys.Lett. A4 (1989), 1605.CrossRefGoogle Scholar
  43. 32.
    A.V. Efremov, J. Soffer and N.A. Törnqvist, Marseille Preprint CPT-90/P.2303 (1989)Google Scholar
  44. See also the recent paper of G.M. Shore and G. Veneziano, CERN preprint TH. 5689 (1990).Google Scholar
  45. 33.
    For a review, see: J.C. Collins and D.E. Soper, Ann.Rev.Nucl.Part.Sci. 37 (1987), 383.CrossRefGoogle Scholar
  46. 34.
    For a recent summary, see: G. Altarelli, Ann. Rev. Nucl. Part. Sci. 39 (1989), 357.CrossRefGoogle Scholar
  47. 35.
    G. Altarelli and B. Lampe, CERN Preprint TH. 5645 (1990).Google Scholar
  48. 36.
    W. Bardeen, Phys.Rev. 184 (1969), 1848, Nucl. Phys. B75 (1974), 246.CrossRefGoogle Scholar
  49. 37.
    S. Forte, Phys.Lett. 224B (1989), 189, Nucl.Phys. B331 (1990), 1.CrossRefGoogle Scholar
  50. 38.
    L. Mankiewicz and A. Schäfer, Preprint Max-Planck Institut, Heidelberg (1989).Google Scholar
  51. 39.
    P. Ratcliffe, Phys.Lett. B192 (1987), 180.CrossRefGoogle Scholar
  52. 40.
    See for example: J.Ph. Guillet, Z.Phys. C39 (1988), 75Google Scholar
  53. Z. Kunszt, Phys.Lett. B218 (1989), 243CrossRefGoogle Scholar
  54. E. Berger and J. Qiu, Phys.Rev. D40 (1989), 778, and Argonne Preprint ANL-HEP-PR-89-68 (1989)Google Scholar
  55. M. Gluck, E. Reya and W. Vogelsang, Dortmund Preprint DO-TH 90/1 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Altarelli
    • 1
  1. 1.Theoretical Physics DivisionCERNGeneva 23Switzerland

Personalised recommendations