Skip to main content

Challenges to Quantum Chromodynamics: Anomalous Spin, Heavy Quark, and Nuclear Phenomena

  • Chapter
The Challenging Questions

Part of the book series: The Subnuclear Series ((SUS,volume 27))

  • 54 Accesses

Abstract

A remarkable claim of theoretical physics is that virtually all aspects of hadron and nuclear physics can be derived from the Lagrangian density of Quantum Chromo-dynamics (QCD):

Work supported by the Department of Energy, contract DE-AC03-76SF00515.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For general reviews of QCD see J. C. Collins and D. E. Soper, Ann. Rev. Nucl. Part. Sci., 31, 383 (1987)

    Article  Google Scholar 

  2. E. Reya, Phys. Rept. 69, 195 (1981)

    Article  Google Scholar 

  3. A.H. Mueller, Lectures on perturbative QCD given at the Theoretical Advanced Study Inst., New Haven, 1985

    Google Scholar 

  4. Quarks and Gluons in Particle and Nuclei, Proc. of the UCSB Institute for Theoretical Physics Workshop on Nuclear Chromodynamics, eds., S.J. Brodsky and E. Moniz (World Scientific, 1985).

    Google Scholar 

  5. For a detailed discussion of exclusive processes in QCD, see S. J. Brodsky and G. P. Lepage, SLAC-PUB-4947 (1989), published in Perturbative Quantum Chromodynamics, World Scientific, edited by A. Mueller, 1989.

    Google Scholar 

  6. P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949). Further references to light-cone quantization are given in Ref. 3.

    Article  Google Scholar 

  7. T. Eller, H. C. Pauli and S. J. Brodsky, Phys. Rev. D35, 1493 (1987).

    Google Scholar 

  8. See e.g. S. J. Brodsky, J. Ellis and M. Karliner, Phys. Lett. 206B, 309 (1988).

    Article  Google Scholar 

  9. S. J. Brodsky and I. Schmidt, SLAC-PUB-5036 (1989).

    Google Scholar 

  10. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 and 675 (1972).

    Google Scholar 

  11. P. Aurenche, R. Baier, M. Fontannaz, J. F. Owens and M. Werlen, Phys. Rev. D39, 3275 (1989).

    Google Scholar 

  12. Further discussion will appear in S. J. Brodsky and I. Schmidt, to be published.

    Google Scholar 

  13. For a corresponding example in atomic physics see M. L. Goldberger and F. E. Low, Phys. Rev. 176, 1778 (1968).

    Article  Google Scholar 

  14. For a general review of the PQCD analysis of exclusive processes and for further reference, see S. J. Brodsky and G. P. Lepage, SLAC-PUB-4947 (1989), to be published in “Perturbative Quantum Chromodynamics”, ed. A. H. Mueller, World Scientific (1989).

    Google Scholar 

  15. S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973)

    Article  Google Scholar 

  16. Phys. Rev. D11. 1309 (1975).

    Google Scholar 

  17. V. A. Matveev, R. M. Muradyan and A. V. Tavkheldize, Lett. Nuovo Cimento 7, 719 (1973).

    Article  Google Scholar 

  18. A. H. Mueller, Phys. Rept. 73, 237 (1981).

    Article  Google Scholar 

  19. J. Botts, and G. Sterman, Phys. Lett. B224. 201 (1989)

    Article  Google Scholar 

  20. Stony Brook preprints ITP-SB-89-7, 44.

    Google Scholar 

  21. S. Dubnicka and E. Etim, Frascati preprint, LNF-89/013-PT, presented at Nucleon Structure Workshop: FENICE Experiment and Investigation of the Neutron Form-Factor, Frascati, Italy, October 1988.

    Google Scholar 

  22. S. J. Brodsky SLAC-PUB-4648, 8th Int. Workshop on Photon-Photon Collisions, Jerusalem, Israel, (1988.)

    Google Scholar 

  23. G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157 (1980)

    Google Scholar 

  24. Phys. Lett. 87B, 359 (1979)

    Google Scholar 

  25. Phys. Rev. Lett. 43, 545, 1625(E) (1979).

    Google Scholar 

  26. S. J. Brodsky and G. P. Lepage, Phys. Rev. D24, 2848 (1981).

    Google Scholar 

  27. V. D. Burkert, CEBAF-PR-87-006.

    Google Scholar 

  28. See also G. R. Farrar, presented to the Workshop on Quantum Chromodynamics at Santa Barbara, 1988.

    Google Scholar 

  29. V. L. Chernyak, A. A. Ogloblin and I. R. Zhitnitskii, Novosibirsk preprints INP 87-135, 136, and references therein.

    Google Scholar 

  30. See also Xiao-Duang Xiang, Wang Xin-Nian, and Huang Tao, BIHEP-TH-84, 23 and 29, 1984

    Google Scholar 

  31. M. J. Lavelle, ICTP-84-85-12; Nucl. Phys. B260, 323 (1985).

    Article  Google Scholar 

  32. N. Isgur and C.H. Llewellyn Smith, Phys. Rev. Lett. 52, 1080 (1984).

    Article  Google Scholar 

  33. G. P. Ko-rchemskii, A. V. Radyushkin, Sov. J. Nucl. Phys. 45, 910 (1987) and refs. therein.

    Google Scholar 

  34. Z. Dziembowski, G. Farrar, H. Zhang, and L. Mankiewicz, contribution to the 12th Int. Conf. on Few Body Problems in Physics, Vancouver, 1989.

    Google Scholar 

  35. V.L. Chernyak and A.R. Zhitnitskii, Phys. Rept. 112, 173 (1984).

    Article  Google Scholar 

  36. See also Xiao-Duang Xiang, Wang Xin-Nian, and Huang Tao, BIHEP-TH-84, 23 and 29 (1984).

    Google Scholar 

  37. Z. Dziembowski and J. Franklin, contribution to the 12th Int. Conf. on Few Body Problems in Physics, Vancouver, 1989.

    Google Scholar 

  38. S. J. Brodsky, T. Huang, G. P. Lepage, published in the proceedings of the SLAC Summer Institute 1981:87.

    Google Scholar 

  39. C. Carlson and F. Gross, Phys. Rev. Lett. 53, 127 (1984)

    Article  Google Scholar 

  40. Phys. Rev. D36, 2060 (1987).

    Google Scholar 

  41. O. C. Jacob and L. S. Kisslinger, Phys. Rev. Lett. 56, 225 (1986).

    Article  Google Scholar 

  42. Z. Dziembowski and L. Mankiewicz, Phys. Rev. Lett. us 58 2175 (1987)

    Article  Google Scholar 

  43. Z. Dziembowski, Phys. Rev. D37, 768, 778, 2030 (1988).

    Google Scholar 

  44. T. Huang, Q.-X. Shen, and P. Kroll, to be published.

    Google Scholar 

  45. R. G. Arnold et al., Phys. Rev. Lett. 57, 174 (1986).

    Article  Google Scholar 

  46. A. H. Mueller, Proc. XVII Recontre de Moriond (1982)

    Google Scholar 

  47. S. J. Brodsky, Proc. XIII Int. Symp. on Multiparticle Dynamics, Volendam (1982).

    Google Scholar 

  48. See also G. Bertsch, A. S. Goldhaber, and J. F. Gunion, Phys. Rev. Lett. 47, 297 (1981)

    Article  Google Scholar 

  49. G. R. Farrar, H. Liu, L. L. Frankfurt, M. J. Strikmann, Phys. Rev. Lett. 61, 686 (1988)

    Article  Google Scholar 

  50. A. H. Mueller, CU-TP-415, talk given at the DPF meeting, Stoors, Conn (1988)

    Google Scholar 

  51. CU-TP-412 talk given at the Workshop on Nuclear and Particle Physics on the Light-Cone, Los Alamos, (1988).

    Google Scholar 

  52. S. J. Brodsky and G. de Teramond, Phys. Rev. Lett. 60, 1924 (1988).

    Article  Google Scholar 

  53. I. Peruzzi et al., Phys. Rev. D17, 2901 (1978).

    Google Scholar 

  54. Unless otherwise noted, the data used here is from the compilation of the Particle Data Group, Phys. Lett. B, 204, 1988.

    Google Scholar 

  55. M. E. B. Franklin, Ph.D Thesis (1982), SLAC-254, UC-34d

    Google Scholar 

  56. M. E. B. Franklin et al., Phys. Rev. Lett. 51, 963 (1983)

    Article  Google Scholar 

  57. G. Trilling, in the Proceedings of the Twenty-First International Conference on High Energy Physics, Paris, July 26–31, 1982

    Google Scholar 

  58. E. Bloom, ibid.

    Google Scholar 

  59. S. J. Brodsky, G. P. Lepage and San Fu Tuan, Phys. Rev. Lett. 59, 621 (1987).

    Article  Google Scholar 

  60. M. Chaichian and N. A. Tornqvist, Nucl. Phys. B323. 75 (1989).

    Article  Google Scholar 

  61. Wei-Shou Hou and A. Soni, Phys. Rev. Lett. 50, 569 (1983).

    Article  Google Scholar 

  62. P. G. O. Freund and Y. Nambu, Phys. Rev. Lett. 34, 1645 (1975).

    Article  Google Scholar 

  63. S. J. Brodsky and C. R. Ji, Phys. Rev. Lett. 55, 2257 (1985).

    Article  Google Scholar 

  64. For general discussions of γγ annihilation in e+ee+eX reactions, see S. J. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. Lett. 25, 972 (1970)

    Article  Google Scholar 

  65. Phys. Rev. D4, 1532 (1971)

    Google Scholar 

  66. V. E. Balakin, V. M. Budnev, and I. F. Ginzburg, JETP Lett. 11, 388 (1970)

    Google Scholar 

  67. N. Arteaga-Romero, A. Jaccarini, and P. Kessler, Phys. Rev. D3, 1569 (1971)

    Google Scholar 

  68. R. W. Brown and I. J. Muzinich, Phys. Rev. D4, 1496 (1971)

    Google Scholar 

  69. C. E. Carlson and W.-K. Tung, Phys. Rev. D4, 2873 (1971).

    Google Scholar 

  70. Reviews and further references are given in H. Kolanoski and P. M. Zerwas, DESY 87-175 (1987)

    Google Scholar 

  71. H. Kolanoski, in “Two-Photon Physics in e+e Storage Rings,” Springer-Verlag (1984)

    Google Scholar 

  72. Ch. Berger and W. Wagner, Phys. Rep. 136 (1987)

    Google Scholar 

  73. J. H. Field, University of Paris Preprint LPNHE 84-04 (1984).

    Google Scholar 

  74. G. Köpp, T. F. Walsh, and P. Zerwas, Nucl. Phys. B70, 461 (1974).

    Article  Google Scholar 

  75. F. M. Renard, Proc. of the Vth International Workshop on γγ Interactions, and Nuovo Cim. 80, 1 (1984). Backgrounds to the C = +, J = 1 signal can occur from tagged e+ee+eX events which produce C = + resonances.

    Google Scholar 

  76. H. Aihara et al., Phys. Rev. Lett. 57, 51, 404 (1986).

    Article  Google Scholar 

  77. Mark II data for combined charged meson pair production are also in good agreement with the PQCD predictions. See J. Boyer et al., Phys. Rev. Lett. 56, 207 (1986).

    Article  Google Scholar 

  78. S.J. Brodsky and G.P. Lepage, Phys. Rev. D24, 1808 (1981).

    Google Scholar 

  79. H. Suura, T. F. Walsh, and B. L. Young, Lett. Nuovo Cimento 4, 505 (1972).

    Article  Google Scholar 

  80. See also M. K. Chase, Nucl. Phys. B167, 125 (1980).

    Article  Google Scholar 

  81. G. W. Atkinson, J. Sucher, and K. Tsokos, Phys. Lett. 137B,. 407 (1984)

    Article  Google Scholar 

  82. G. R. Farrar, E. Maina, and F. Neri, Nucl. Phys. B259, 702 (1985)

    Article  Google Scholar 

  83. E. Maina, and F. Neri, Nucl. Phys. Err.-ibid. B263, 746 (1986).

    Google Scholar 

  84. E. Maina, Rutgers Ph.D. Thesis (1985)

    Google Scholar 

  85. J. F. Gunion, D. Millers, and K. Sparks, Phys. Rev. D33, 689 (1986)

    Google Scholar 

  86. P. H. Damgaard, Nucl. Phys. B211. 435,(1983)

    Article  Google Scholar 

  87. B. Nizic, Ph.D. Thesis, Cornell University (1985)

    Google Scholar 

  88. D. Millers and J. F. Gunion, Phys. Rev. D34, 2657 (1986).

    Google Scholar 

  89. J. Boyer et al., Ref. 41

    Article  Google Scholar 

  90. TPC/ Two Gamma Collaboration (H. Aihara et al.), Phys. Rev. Lett. 57, 404 (1986).

    Article  Google Scholar 

  91. M. Benayoun and V. L. Chernyak, College de France preprint LPC 89 01 (1989).

    Google Scholar 

  92. B. Nizic Phys. Rev. D35, 80 (1987)

    Google Scholar 

  93. G. R. Farrar RU-88-47, Invited talk given at Workshop on Particle and Nuclear Physics on the Light Cone, Los Alamos, New Mexico, 1988

    Google Scholar 

  94. G. R. Farrar, H. Zhang, A. A. Globlin and I. R. Zhitnitskii, Nucl. Phys. B311. 585 (1989)

    Article  Google Scholar 

  95. G. R. Farrar, E. Maina, and F. Neri, Phys. Rev. Lett. 53, 28 and, 742 (1984).

    Article  Google Scholar 

  96. A simple method for estimating hadron pair production cross sections near threshold in γγ collisions is given by S. J. Brodsky, G. Kopp, and P. Zerwas, Phys. Rev. Lett. 58, 443 (1987).

    Article  Google Scholar 

  97. C. Avilez, E. Ley Koo, M. Moreno, Phys. Rev. D19, 2214 (1979).

    Google Scholar 

  98. C. Avilez, R. Montemayor, M. Moreno, Nuovo Cim. Lett. 21, 301 (1978). M. B. Voloshin, unpublished.

    Article  Google Scholar 

  99. J. Schwinger, in “Particles, Sources and Fields,” Addison-Wesley, New York, 1973. Vol II.

    Google Scholar 

  100. For a review and references, see R. M. Barnett, M. Dine, L. McLerran, Phys. Rev. D22, 594 (1980).

    Google Scholar 

  101. I._D. King and C. T. Sachrajda, Nucl. Phys. B279, 785 (1987).

    Article  Google Scholar 

  102. G._P. Lepage, S. J. Brodsky, Tao Huang and P. B. Mackenzie, published in the Proceedings of the Banff Summer Institute, 1981.

    Google Scholar 

  103. S.J. Brodsky and B.T. Chertok, Phys. Rev. Lett. 37, 269 (1976); Phys. Rev. D114, 3003 (1976).

    Article  Google Scholar 

  104. M. Gari and N. Stefanis, Phys. Lett. B175, 462 (1986), M. Gari and N. Stefanis, Phys. Lett. 187B, 401 (1987).

    Article  Google Scholar 

  105. C-R Ji, A. F. Sill and R. M. Lombard-Nelsen, Phys. Rev. D36, 165 (1987).

    Google Scholar 

  106. S. Gottlieb and A. S. Kronfeld, CLNS-85/646, June 1985.

    Google Scholar 

  107. G. Martinelli and C. T. Sachrajda, Phys. Lett. 190B, 151, 196B, 184, (1987)

    Article  Google Scholar 

  108. Phys. Lett. B217, 319, (1989).

    Google Scholar 

  109. A. S. Carroll et al., Phys. Rev. Lett. 61, 1698 (1988).

    Article  Google Scholar 

  110. G. R. Court et al., Phys. Rev. Lett. 57, 507 (1986).

    Article  Google Scholar 

  111. R. Blankenbecler and S. J. Brodsky, Phys. Rev. D10, 2973 (1974).

    Google Scholar 

  112. I.A. Schmidt and R. Blankenbecler, Phys. Rev. D15, 3321 (1977).

    Google Scholar 

  113. For other attempts to explain the spin correlation data, see C. Avilez, G. Cocho and M. Moreno, Phys. Rev. D24, 634 (1981)

    Google Scholar 

  114. G. R. Farrar, Phys. Rev. Lett. 56, 1643 (1986), Err-ibid. 56, 2771 (1986)

    Article  Google Scholar 

  115. H. J. Lipkin, Nature 324, 14 (1986)

    Article  Google Scholar 

  116. S. M. Troshin and N. E. Tyurin, JETP Lett. 44, 149 (1986) [Pisma Zh. Eksp. Teor. Fiz. 44, 117 (1986)]

    Google Scholar 

  117. G. Preparata and J. Soffer, Phys. Lett. 180B, 281 (1986)

    Article  Google Scholar 

  118. S. V. Goloskokov, S. P. Kuleshov and O. V. Seljugin, Proceedings of the VII International Symposium on High Energy Spin Physics, Protvino (1986)

    Google Scholar 

  119. C. Bourrely and J. Soffer, Phys. Rev. D35, 145 (1987).

    Google Scholar 

  120. See Ref. 61; T. S. Bhatia et al., Phys. Rev. Lett. 49, 1135 (1982)

    Article  Google Scholar 

  121. E. A. Crosbie et al., Phys. Rev. D23, 600 (1981)

    Google Scholar 

  122. A. Lin et al., Phys. Lett. 74B, 273 (1978)

    Article  Google Scholar 

  123. D. G. Crabb et al., Phys. Rev. Lett. 41, 1257 (1978)

    Article  Google Scholar 

  124. J. R. O’Fallon et al., Phys. Rev. Lett. 39, 733 (1977)

    Article  Google Scholar 

  125. For à review, see A. D. Krisch, Proceedings of the VII International Symposium on High Energy Spin Physics, Protvino (1986) p. 272.

    Google Scholar 

  126. General QCD analyses of exclusive processes are given in Ref. 14, S. J. Brodsky and G. P. Lepage, SLAC-PUB-2294, presented at the Workshop on Current Topics in High Energy Physics, Cal Tech (Feb. 1979), S. J. Brodsky, in the Proc. of the La Jolla Inst. Summer Workshop on QCD, La Jolla (1978), A. V. Efremov and A. V. Radyushkin, Phys. Lett. B94, 245 (1980), V. L. Chernyak, V. G. Serbo, and A. R. Zhitnitskii, Yad. Fiz. 31, 1069 (1980), S. J. Brodsky, Y. Frishman, G. P. Lepage, and C. Sachrajda, Phys. Lett. 91B, 239 (1980), and A. Duncan and A. H. Mueller, Phys. Rev. D21, 1636 (1980).

    Google Scholar 

  127. There are five different combinations of six quarks which yield a color singlet B=2 state. It is expected that these QCD degrees of freedom should be expressed as B=2 resonances. See, e.g. C. R. Ji and S. J. Brodsky, Phys. Rev. D34, 1460 (1986); D33, 1951, 1406, 2653, (1986). For a review of multi-quark evolution, see S. J. Brodsky, C.-R. Ji, SLAC-PUB-3747, (1985).

    Google Scholar 

  128. For other examples of threshold enhancements in QCD, see S. J. Brodsky, J. F. Gunion and D. E. Soper, S. J. Brodsky, J. F. Gunion and D. E. Soper, Phys. Rev. D36, 2710 (1987) and also Ref. 49. Resonances are often associated with the onset of a new threshold. For a discussion, see D. Bugg, Presented at the IV LEAR Workshop, Villars-Sur-Ollon, Switzerland, September 6–13, 1987.

    Google Scholar 

  129. G._C. Blazey et al., Phys. Rev. Lett. 55, 1820 (1985); G. C. Blazey, Ph.D. Thesis, University of Minnesota (1987); B. R. Bailer, Ph.D. Thesis, University of Minnesota (1987)

    Article  Google Scholar 

  130. D. S. Barton, et al., J. de Phys. 46, C2, Supp. 2 (1985).

    Google Scholar 

  131. For a review, see D. Sivers, S. J. Brodsky and R. Blankenbecler, Phys. Reports 23C, 1 (1976).

    Article  Google Scholar 

  132. J._F. Gunion, R. Blankenbecler and S. J. Brodsky, Phys. Rev. D6, 2652 (1972).

    Google Scholar 

  133. S._J. Brodsky, C. E. Carlson and H. J. Lipkin, Phys. Rev. D20, 2278 (1979)

    Google Scholar 

  134. G. R. Farrar, S. Gottlieb, D. Sivers and G. Thomas, Phys. Rev. D20, 202 (1979).

    Google Scholar 

  135. With the above normalization, the unpolarized pp elastic cross section is dσ/dt = Σi=1,2,…5 | φ 2i |/(128πsp 2cm ).

    Google Scholar 

  136. J._P. Ralston and B. Pire, Phys. Rev. Lett. 57, 2330 (1986)

    Article  Google Scholar 

  137. Phys. Lett. 117B, 233 (1982).

    Google Scholar 

  138. At low momentum transfers one expects the presence of both helicity-conserving and helicity non-conserving pomeron amplitudes. It is possible that the data for AN at plab = 11.75 GeV/c can be understood over the full angular range in these terms. The large value of AN = 24 ± 8% at plah = 28 GeV/c and p 2T = 6.5 GeV2 remains an open problem. See P. R. Cameron et al., Phys. Rev. D32, 3070 (1985).

    Google Scholar 

  139. K. Abe et al., Phys. Rev. D12, 1 (1975), and references therein. The high energy data for dσ/dt at θcm = π/2 are from C. W. Akerlof et al., Phys. Rev. 159, 1138 (1967)

    Google Scholar 

  140. G. Cocconi et al., Phys. Rev. Lett. 11, 499 (1963)

    Article  Google Scholar 

  141. J. V. Allaby et al., Phys. Lett. 23, 389 (1966).

    Article  Google Scholar 

  142. I._P. Auer et al., Phys. Rev. Lett. 52, 808 (1984). Comparison with the low energy data for ALL at θcm = π/2 suggests that the resonant amplitude below piab = 5.5 GeV/c has more structure than the single resonance form adopted here. See I. P. Auer et al., Phys. Rev. Lett. 48, 1150 (1982).

    Article  Google Scholar 

  143. A._W. Hendry, Phys. Rev. D10, 2300 (1974); N. Jahren and J. Hiller, University of Minnesota preprint, 1987.

    Google Scholar 

  144. The neutral strange inclusive pp cross section measured at plab = 5.5 GeV/c is 0.45 ± 0.04 mb; see G. Alexander et al., Phys. Rev. 154, 1284 (1967).

    Article  Google Scholar 

  145. G._R. Court et al., Phys. Rev. Lett. 57, 507 (1986); for a review, see A. D. Krisch, University of Michigan Report No. UM-HE-86-39, 1987 (unpublished).

    Article  Google Scholar 

  146. S._J. Brodsky, G. de Teramond, and I. Schmidt, SLAC-PUB 5102 (1989).

    Google Scholar 

  147. See, for example, T. Appelquist and W. Fischler, Phys. Lett. 77B, 405 (1978).

    Article  Google Scholar 

  148. Due to the vector-like gluonic nature of the QCD van der Waals interaction, the pomeron scattering amplitude can be extrapolated to small s yielding a nuclear potential which incorporates multiple-gluon exchange. In principle, we could use such a procedure to evaluate the isospin-zero vector component of the low energy nucleon-nucleon potential. However, this extrapolation is not completely unambiguous if quark interchange is the dominant component, since multiple gluon exchange is difficult to distinguish from effective ω exchange. Nevertheless, in principle, the QCD van der Waals interaction provides an attractive vector-like isospin-zero potential which should be added to the usual meson-exchange potential, and this may have implications for low energy nuclear physics studies, such as nucleon-nucleon scattering and binding.

    Google Scholar 

  149. A. Donnachie and P. V. Landshoff, Nucl. Phys. B244, 322 (1984).

    Article  Google Scholar 

  150. P. V. Landshoif and O. Nachtmann, Zeit. Phys. C35, 405 (1987).

    Google Scholar 

  151. It should be noted that the absorptive cross section deduced from the A-dependence of J/ψ photoproduction in nuclei underestimates the true cross section since the J/ψ is typically formed outside the nucleus; see S. J. Brodsky and A. H. Mueller, Phys. Lett. 206B, 685 (1988).

    Article  Google Scholar 

  152. For discussions of the possibility of bound states of strange particles with nuclei, see R. E. Chrien et al., Phys. Rev. Lett. 60, 2595 (1988), and refs. therein; and J. L. Rosen, Northwestern University preprint, submitted to the BNL Workshop on Glueballs, Hybrids, and Exotic Hadrons (1988).

    Article  Google Scholar 

  153. R. Hofstadter, Ann. Rev. of Nuclear Science 7, 231 (1957). The He3 and He4 data are from J. S. McCarthy et al., Phys. Rev. C15, 1396 (1977).

    Article  Google Scholar 

  154. D._B. Lichtenberg and J. G. Wills, Nuovo Cimento 47A, 483 (1978).

    Article  Google Scholar 

  155. See, for example, S. A. Williams et al., Phys. Rev. Lett. 49, 771 (1982).

    Article  Google Scholar 

  156. The signal for the production of almost-bound nucleon (or nuclear) charmonium systems near threshold such as in γp → (c̄c)p is the isotropic production of the recoil nucleon (or nucleus) at large invariant mass MXMηc, MJ/ψ.

    Google Scholar 

  157. P. Hoodbhoy and R.L. Jaffe, Phys. Rev. D35, 113 (1987); R.L. Jaffe, CTP #1315 (1985).

    Google Scholar 

  158. S.J. Brodsky, G.T. Bodwin and G.P. Lepage, in the Proc. of the Volendam Multipart. Dyn. Conf., 1982, p. 841; Proc. of the Banff Summer Inst., 1981, p. 513. This effect is related to the formation zone principle of L. Landau and I. Pomeranchuk, Dok. Akademii Nauk SSSR 92, 535,735 (1953).

    Google Scholar 

  159. G.T. Bodwin, Phys. Rev. D31, 2616 (1985); G.T. Bodwin, S.J. Brodsky and G.P. Lepage, ANL-HEP-CP-85-32-mc (1985), presented at 20th Rencontre de Moriond, Les Arcs, France, March 10–17, 1985.

    Google Scholar 

  160. G._T. Bodwin, S. J. Brodsky, and G. P. Lepage, Phys. Rev. D39, 3287 (1989).

    Google Scholar 

  161. J. Ashman et al., Phys. Lett. 202B, 603 (1988) and CERN-EP/88-06 (1988) M. Arneodo et al., Phys. Lett. 211B, 493 (1988)

    Article  Google Scholar 

  162. R._G. Arnold et al., Phys. Rev. Lett. 52, 727 (1984) and SLAC-PUB-3257 (1983)

    Article  Google Scholar 

  163. J._S. Bell, Phys. Rev. Lett. 13, 57 (1964)

    Article  Google Scholar 

  164. L. Stodolsky, Phys. Rev. Lett. 18, 135 (1967)

    Article  Google Scholar 

  165. S._J. Brodsky and J. Pumplin, Phys. Rev. 182, 1794 (1969)

    Article  Google Scholar 

  166. J._J. Sakurai and D. Schildknecht, Phys. Lett. 40B, 121 (1972); Phys. Lett. 41B. 489 (1972); Phys. Lett. 42B, 216 (1972)

    Article  Google Scholar 

  167. R._J. Glauber, in Lectures in Theoretical Physics, edited by W. E. Brittin et al. (Interscience, New York, 1959), vol. I

    Google Scholar 

  168. T._H. Bauer, R. D. Spital, D. R. Yennie and F. M. Pipkin, Rev. Mod. Phys. 50, 261 (1978)

    Article  Google Scholar 

  169. P._V. Landshoff, J. C. Polkinghorne and R. D. Short, Nucl. Phys. B28, 225 (1971)

    Article  Google Scholar 

  170. S._J. Brodsky, F. E. Close and J. F. Gunion, Phys. Rev. D 5, 1384 (1972)

    Article  Google Scholar 

  171. S._J. Brodsky and H. J. Lu, SLAC-PUB-5098 (1989).

    Google Scholar 

  172. A._H. Mueller and J. Qiu, Nucl. Phys. B268, 427 (1986) J. Qiu, Nucl. Phys. B291, 746 (1987)

    Article  Google Scholar 

  173. L._L. Frankfurt and M. I. Strikman, Nucl. Phys. B316, 340 (1988) and Phys. Rep. 160, 235 (1988)

    Google Scholar 

  174. Rigorously we should also include the effect due to shadowing of the gluon structure function of the nucleus. A more detailed analysis may be able to distinguish quark and gluon shadowing effects.

    Google Scholar 

  175. V. Franco, Phys. Rev. Lett. 21, 1452 (1970) and Phys. Rev. C 6, 748 (1972)

    Article  Google Scholar 

  176. A._Y. Abul-Magd, Nucl. Phys. B8, 638 (1968)

    Article  Google Scholar 

  177. R._A. Rudin, Phys. Lett. 30B, 357 (1969)

    Article  Google Scholar 

  178. E._L. Berger, Nucl. Phys. B267, 231 (1986)

    Article  Google Scholar 

  179. S._J. Brodsky and P. Hoyer, SLAC-PUB-4978 (1989).

    Google Scholar 

  180. G. Bertsch, S. J. Brodsky, A. S. Goldhaber, and J. F. Gunion, Phys. Rev. Lett. 47, 297 (1981). In this paper the “color filter” argument was used to predict the production in nuclei of diffractive high mass multi-jet final states with momentum distributions controlled by the structure of the valence Fock state of the incident hadrons.

    Article  Google Scholar 

  181. S._J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. 93B, 451 (1980)

    Article  Google Scholar 

  182. S. J. Brodsky, C. Peterson, and N. Sakai, Phys. Rev. D23, 2745 (1981).

    Google Scholar 

  183. Detailed predictions for the contribution of intrinsic charm to the nucleon charmed quark structure functions and comparisons with existing lepto-production data are given by E. Hoffmann and R. Moore Z. Phys. C20, 71 (1983).

    Google Scholar 

  184. T. Eichten et al., Nucl. Phys. B44, 333 (1978)

    Google Scholar 

  185. P. Skubic et al., Phys. Rev. D18, 3115 (1978)

    Google Scholar 

  186. D. S. Barton et al., Phys. Rev. D27, 2580 (1983)

    Google Scholar 

  187. W. Busza, Proc. XIII Int. Symp. on Multiparticle Dynamics, Volendam (1982)

    Google Scholar 

  188. L. G. Pondrom, Phys. Rep. 122, 57 (1985).

    Article  Google Scholar 

  189. K. J. Anderson et al., Phys. Rev. Lett. 42, 944 (1979)

    Article  Google Scholar 

  190. A. S. Ito et al., Phys. Rev. D23, 604 (1981)

    Google Scholar 

  191. J. Badier et al., Phys. Lett. 104B, 335 (1981)

    Article  Google Scholar 

  192. P. Bordalo et al., Phys. Lett. 193B, 368 (1987).

    Article  Google Scholar 

  193. S._P. K. Tavernier, Rep. Prog. Phys. 50, 1439 (1987)

    Article  Google Scholar 

  194. U. Gasparini, Proc. XXIV Int. Conf. on High Energy Physics, (R. Kotthaus and J. H. Kühn, Eds., Springer 1989), p. 971.

    Google Scholar 

  195. M. MacDermott and S. Reucroft, Phys. Lett. 184B, 108 (1987).

    Article  Google Scholar 

  196. Yu. M. Antipov et al., Phys. Lett. 76B, 235 (1978)

    Article  Google Scholar 

  197. M. J. Corden et al., Phys. Lett. 110B, 415 (1982)

    Article  Google Scholar 

  198. J. Badier et al., Z. Phys. C20, 101 (1983)

    Google Scholar 

  199. S. Katsanevas et al., Phys. Rev. Lett. 60, 2121 (1988).

    Article  Google Scholar 

  200. The condition for no inelastic rescattering of a high energy particle in a nucleus of length LA is Eh > μ2LA. Here μ2 is the change in the square of the invariant mass occurring in the rescattering. For a recent discussion of formation zone conditions in gauge theory see G. T. Bodwin, S. J. Brodsky, and G. P. Lepage, Phys. Rev. D39, 3287 (1989).

    Google Scholar 

  201. W. Busza et al., Acta Phys. Polon. B8, 333 (1977), and Proc. of the 7th Int. Colloquium on Multiparticle Reactions, Tutzing, Germany, 1976 (publ. by Max Planck Inst., Munich 1976).

    Google Scholar 

  202. P. Hoyer, B. P. Mahapatra, K. Sridhar, and U. Sukhatme, Working Group Report, Workshop on High Energy Physics Phenomenology, T. I. F. R., Bombay (1989). (To be published in the Proceedings.)

    Google Scholar 

  203. Alternatively, the individual charmed quarks can fragment into final state charmed hadrons either by hadronization or by coalescing with co-moving light quark spectators from the beam. See S J. Brodsky and A. H. Mueller, Phys. Lett. B206, 685 (1988). Mueller and I have also used this coalescence mechanism to explain the suppression of J/ψ production in heavy ion collisions at high transverse energy ET.

    Article  Google Scholar 

  204. S._J. Brodsky, H. E. Haber, and J. F. Gunion, in Anti-pp Options for the Supercollider, Division of Particles and Fields Workshop, Chicago, IL, 1984, edited by J. E. Pilcher and A. R. White (SSC-ANL Report No. 84/01/13, Argonne, IL, 1984), p. 100. S. J. Brodsky, J. C. Collins, S. D. Ellis, J. F. Gunion, and A. H. Mueller, published in Snowmass Summer Study 1984, p. 227.

    Google Scholar 

  205. A. Bialas and W. Czyż, Nucl. Phys. B194, 21 (1982).

    Article  Google Scholar 

  206. H._E. Miettinen and P. M. Stevenson, Phys. Lett. B199, 591 (1987)

    Article  Google Scholar 

  207. See Ref. 55 and S. J. Brodsky and J. R. Hiller, Phys. Rev. C28, 475 (1983).

    Google Scholar 

  208. The data are compiled in Brodsky and Hiller, J. R. Hiller, Phys. Rev. C28, 475 (1983) Ref. 128.

    Google Scholar 

  209. T. Fujita, MPI-Heidelberg preprint, 1989.

    Google Scholar 

  210. S._J. Brodsky, C.-R. Ji, G. P. Lepage, Phys. Rev. Lett. 51, 83 (1983).

    Article  Google Scholar 

  211. J. Napolitano et al., ANL preprint PHY-5265-ME-88 (1988).

    Google Scholar 

  212. T._S.-H. Lee, ANL preprint (1988).

    Google Scholar 

  213. H. Myers et al., Phys. Rev. 121, 630 (1961)

    Article  Google Scholar 

  214. R. Ching and C. Schaerf, Phys. Rev. 141. 1320 (1966)

    Article  Google Scholar 

  215. P. Dougan et al., Z. Phys. A 276, 55 (1976).

    Article  Google Scholar 

  216. L._A. Kondratyuk and M. G. Sapozhnikov, Phys. Lett. B220, 333 (1989).

    Article  Google Scholar 

  217. H._C. Pauli and S. J. Brodsky, Phys. Rev. D32, 1993, 2001 (1985) and Ref. 3.

    Google Scholar 

  218. K._ Hornbostel, SLAC-0333, Dec 1988

    Google Scholar 

  219. K. Hornbostel, S. J. Brodsky, and H. C. Pauli, SLAC-PUB-4678, Talk presented to Workshop on Relativistic Many Body Physics, Columbus, Ohio, June, 1988.

    Google Scholar 

  220. S._J. Brodsky, H. C. Pauli, and A. Tang, in preparation.

    Google Scholar 

  221. S._D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181 (1970).

    Article  Google Scholar 

  222. C._J. Burden and C. J. Hamer, Phys. Rev. D31, 479 (1988), and references therein.

    Google Scholar 

  223. Y. Frishman and J. Sonnenschein, Nucl. Phys. B294, 801 (1987), and Nucl. Phys. B301, 346 (1988).

    Article  Google Scholar 

  224. For a discussion of renormalization in light-cone perturbation theory, see R. Suaya, and R. Roskies, Phys. Rev. D8, 4574 (1973) Ref. 143 and also Ref. 14.

    Google Scholar 

  225. S. J. Brodsky, R. Suaya, and R. Roskies, Phys. Rev. D8, 4574 (1973).

    Google Scholar 

  226. S. G. Gorishny, A. L. Kataev, and S. A. Larin, Phys. Lett. B212, 238 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brodsky, S.J. (1990). Challenges to Quantum Chromodynamics: Anomalous Spin, Heavy Quark, and Nuclear Phenomena. In: Zichichi, A. (eds) The Challenging Questions. The Subnuclear Series, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3828-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3828-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6708-6

  • Online ISBN: 978-1-4615-3828-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics