Organization of the Cerebral Cortex in Monotremes and Marsupials

  • Mark Rowe
Part of the Cerebral Cortex book series (CECO, volume 8B)


The view that monotreme, marsupial, and placental orders of mammals formed an orderly progression in mammalian evolution arose in the 19th Century. Monotremes were designated the Prototheria, or first mammals, based largely on their reptilian-like reproductive practice of laying eggs, while the marsupials were designated the Metatheria, or changed mammals, and were thought to form the next stage of mammalian evolution toward placental mammals—the Eutheria or complete mammals. However, these notions of a simple hierarchy in mammalian evolution are misguided in that each of the three orders has under-gone its independent evolutionary development with perhaps major transformations having taken place within each order from the earliest forebears of that order (for reviews, see Tyndale-Biscoe, 1973; Clemens, 1977, 1979a,b; Griffiths, 1978; Archer, 1982; Dawson, 1983; Tyndale-Biscoe and Renfree, 1987). Furthermore, the reptilian-like precursors of these three mammalian orders may bear little resemblance to surviving reptiles as both the reptilian and the mammalian lines have evolved over independent courses for approximately 300 million years since the Carboniferous period (Dawson, 1983). The evolutionary line that was to lead to mammals probably underwent a reptilian-to-mammalian transition about 200 million years ago in the late Triassic Period (Fig. 1). The monotreme ancestors formed a separate line of mammalian evolution at about that time or, even earlier, emerged through the reptile-to-mammal barrier on a separate path from the therian mammals. Thus, mammalian evolutionary progress may have come from two broad stem lines, the therian mammals, from which placental and marsupial species have arisen, and the nontherian mammals that are now represented by present-day monotremes (Fig. 1). A more detailed representation of the marsupial radiation is given in Fig. 2 from Kirsch (1977).


Cerebral Cortex Motor Cortex Receptive Field Auditory Cortex Somatosensory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbie, A. A., 1934, The brain stem and cerebellum of Echidna aculeata, Philos. Trans. R. Soc. London Ser. B 224: 1–74.CrossRefGoogle Scholar
  2. Abbie, A. A., 1938, The excitable cortex in the Monotremata, Aust. J. Exp. Biol. Med. Sci. 16: 143–152.CrossRefGoogle Scholar
  3. Abbie, A. A., 1939, The origin of the corpus callosum and the fate of the structures related to it, J. Comp. Neurol. 71: 9–44.CrossRefGoogle Scholar
  4. Abbie, A. A., 1940a, Cortical lamination in the Monotremata, J. Comp. Neurol. 72: 429–467.CrossRefGoogle Scholar
  5. Abbie, A. A., 1940b, The excitable cortex in Perameles, Sarcophilus, Dasyurus, Trichosurus, and Wallabia (Macropus), J. Comp. Neurol. 72: 469–487.CrossRefGoogle Scholar
  6. Adey, W. R., and Kerr, D. I. B., 1954, The cerebral representation of deep somatic sensibility in the marsupial phalanger and rabbit; an evoked potential and histological study, J. Comp. Neurol. 100: 597–626.PubMedCrossRefGoogle Scholar
  7. Adrian, E. D., 1940, Double representation of the feet in the sensory cortex of the cat, J. Physiol. (London) 98: 16P - 18 P.Google Scholar
  8. Adrian, E. D., 1941, Afferent discharges to the cerebral cortex from peripheral sense organs, J. Physiol. (London) 100: 159–191.Google Scholar
  9. Aitkin, L. M., and Gates, G. R., 1983, Connections of the auditory cortex of the brush-tailed possum, Trichosurus vulpecula, Brain Behau Evol. 22: 75–88.CrossRefGoogle Scholar
  10. Aitkin, L. M., Calford, M. B., Kenyon, C. E., and Webster, W. R., 1981, Some facets of the organization of the principal division of the cat medial geniculate body, in: Neuronal Mechanisms of Hearing ( J. Syka and L. M. Aitkin, eds.), Plenum Press, New York, pp. 163–181.CrossRefGoogle Scholar
  11. Aitkin, L. M., Irvine, D. R. F., and Webster, W R., 1984, Central neural mechanisms of hearing, in: Handbook of Physiology, Section I, Volume III, Part 2 ( I. Darian-Smith, ed.), American Physiological Society, Bethesda, pp. 675–737.Google Scholar
  12. Aitkin, L. M., Irvine, D. R. F., Nelson, J. E., Merzenich, M. M., and Clarey, J. C., 1986, Frequency representation in the auditory midbrain and forebrain of a marsupial, the northern native cat (Dasyurus hallucatus), Brain Behau Evol. 29: 17–28.CrossRefGoogle Scholar
  13. Allison, T, and Goff, W. R., 1972, Electrophysiological studies of the echidna, Tachyglossus aculeatus III. Sensory and interhemispheric evoked responses, Arch. Ital. Biol. 110: 195–216.PubMedGoogle Scholar
  14. Andres, K. H., and von During, M., 1984, The platypus bill. A structural and functional model of a pattern-like arrangement of different cutaneous sensory receptors, in: Sensory Receptor Mechanisms ( W. Hamann and A. Iggo, eds.), World Scientific Publishers, Singapore, pp. 81–88.Google Scholar
  15. Archer, M., 1982, A review of the origins of radiations of Australian mammals, in: Ecological Biogeography of Australia ( A. Keast, ed.), Junk, The Hague, pp. 1435–1488.Google Scholar
  16. Austad, S. N., 1988, The adaptable opossum, Sci. Am. 258 (2): 54–59.CrossRefGoogle Scholar
  17. Barrett, C., 1941, The Platypus, Robertson & Mullend, Melbourne.Google Scholar
  18. Bautista, N. A., and Matzke, H. A., 1965, A degeneration study of the course and extent of the pyramidal tract of the opossum, J. Comp. Neurol. 124: 367–375.PubMedCrossRefGoogle Scholar
  19. Benevento, L. A., and Ebner, F. F., 1971a, The areas and layers of corticocortical terminations in the visual cortex of the Virginia opossum, J. Comp. Neurol. 141: 157–190.PubMedCrossRefGoogle Scholar
  20. Benevento, L. A., and Ebner, F. F., 1971b, The contribution of the dorsal lateral geniculate nucleus to the total pattern of thalamic terminations in striate cortex of the Virginia opossum, J. Comp. Neurol. 143: 243–260.PubMedCrossRefGoogle Scholar
  21. Benjamin, R. M., and Jackson, J. C., 1974, Unit discharges in the mediodorsal nucleus of the squirrel monkey evoked by electrical stimulation of the olfactory bulb, Brain Res. 75: 181–191.PubMedCrossRefGoogle Scholar
  22. Bennett, R. E., Ferrington, D. G., and Rowe, M. J., 1980, Tactile neuron classes within second somatosensory area (SII) of cat cerebral cortex, J. Neurophysiol. 43: 292–309.PubMedGoogle Scholar
  23. Benno, R. H., and Williams, T. H., 1978, Evidence for intracellular localization of alpha-fetoprotein in the developing rat brain, Brain Res. 142: 182–186.PubMedCrossRefGoogle Scholar
  24. Bodemer, C. W, and Towe, A. L., 1963, Cortical localization patterns in the somatic sensory cortex of the opossum, Exp. Neurol. 8: 380–394.CrossRefGoogle Scholar
  25. Bodian, D., 1942, Studies on the diencephalon of the Virginia opossum. Part III. The thalamocortical projection, J. Comp. Neurol. 77: 525–575.CrossRefGoogle Scholar
  26. Bohringer, R. C., 1977, The somatosensory system of the platypus (Ornithorhynchus anatinus), Ph.D. thesis, University of New South Wales, Sydney.Google Scholar
  27. Bohringer, R. C., 1981, Cutaneous receptors in the bill of the platypus (Ornithorhynchus anatinus), Aust. Mammal. 4: 93–105.Google Scholar
  28. Bohringer, R. C., and Rowe, M. J., 1977, The organization of the sensory and motor areas of cerebral cortex in the platypus (Ornithorhynchus anatinus), J. Comp. Neurol. 174: 1–14.PubMedCrossRefGoogle Scholar
  29. Brodmann, K., 1909, Vergleichende Lokalissationslehre der Grosshirnrinde, Barth, Leipzig.Google Scholar
  30. Bromiley, R. B., and Brooks, C. M., 1940, Role of neocortex in regulating postural reactions of the opossum (Didelphis virginiana), J. Neurophysiol. 3: 339–346.Google Scholar
  31. Broomhead, A., 1974, The mediodorsal thalamic nucleus of the brush-tailed possum, Trichosurus vulpecula, J. Anat. 118: 392.PubMedGoogle Scholar
  32. Brugge, J. F., and Reale, R. A., 1985, Auditory cortex, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 229–271.Google Scholar
  33. Bullier, J., 1984, Axonal bifurcation in the afferents to cortical areas of the visual system, in: Visual Neuroscience ( J. D. Pettigrew, K. J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, London, pp. 239–259.Google Scholar
  34. Burkitt, A. N. S., 1934, The variability of the gyri and sulci in the cerebral hemispheres of Tachyglossus (echidna) aculeata, Psychiatr. Neurol. Bl. 38: 368–378.Google Scholar
  35. Burrell, H., 1927, The Platypus: Its Discovery, Zoological Position, Form and Characteristics, Habits, Life History Etc., Angus & Robertson, Sydney.Google Scholar
  36. Burton, H., 1986, The second somatosensory cortex and related areas, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 31–98.Google Scholar
  37. Cabana, T., and Martin, G. F., 1984, Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana), Dev. Brain Res. 15: 247–263.CrossRefGoogle Scholar
  38. Cabana, T, and Martin, G. F., 1985, Corticospinal development in the North-American opossum: Evidence for a sequence in the growth of cortical axons in the spinal cord and for transientGoogle Scholar
  39. projections, Dev. Brain Res. 23:69–80.Google Scholar
  40. Campbell, C. B. G., and Hayhow, W. R., 1971, Primary optic pathways in the echidna Tachyglossus aculeatus: An experimental degeneration study, J. Comp. Neurol. 143: 119–136.PubMedCrossRefGoogle Scholar
  41. Campbell, C. B. G., and Hayhow, W. R., 1972, Primary optic pathways in the duckbill platypus Ornithorynchus anatinus: An experimental degeneration study, J. Comp. Neurol. 145: 195–208.PubMedCrossRefGoogle Scholar
  42. Carman, J. B., Cowan, W. M., Powell, T. P. S., and Webster, K. E., 1965, A bilateral corticostriate projection, J. Neurol. Neurosurg. Psychiatry 28: 71–77.PubMedCrossRefGoogle Scholar
  43. Carreras, M., and Anderson, S. A., 1963, Functional properties of neurons of the anterior ectosylvian gyrus of the cat, J. Neurophysiol. 26: 100–126.PubMedGoogle Scholar
  44. Cavanagh, M. E., and Møllgard, K., 1985, An immunocytochemical study of the distribution of some plasma proteins within the developing forebrain of the pig with reference to the neocortex, Dev. Brain Res. 17: 183–194.CrossRefGoogle Scholar
  45. Clemens, W. A., 1977, Phylogeny of the marsupials, in: Biology of Marsupials ( B. Stonehouse and D. Gilmore, eds.), Macmillan & Co., London, pp. 51–68.Google Scholar
  46. Clemens, W. A., 1979a, Marsupialia, in: Mesozoic Animals ( J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds.), University of California Press, Berkeley, pp. 192–220.Google Scholar
  47. Clemens, W. A., 1979b, Marsupialia, in: Mesozoic Animals ( J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds.), University of California Press, Berkeley, pp. 309–311.Google Scholar
  48. Coleman, J., Diamond, I. T., and Winer, J. A., 1977, The visual cortex of the opossum: The retrograde transport of horseradish peroxidase to the lateral geniculate and lateral posterior nuclei, Brain Res. 137: 233–252.PubMedCrossRefGoogle Scholar
  49. Cowan, W. M., Fawcett, J. W, O’Leary, D. D. M., and Stanfield, B. B., 1984, Regressive events in neurogenesis, Science 225: 1258–1265.PubMedCrossRefGoogle Scholar
  50. Crewther, D. P., Crewther, S. G., and Sanderson, K.J., 1984, Primary visual cortex in the brush-tailed possum: Receptive field properties and corticocortical connections, Brain Behav. Evol. 24: 184–197.PubMedCrossRefGoogle Scholar
  51. Crewther, D. P., Nelson, J. E., and Crewther, S. G., 1988, Afferent input for target survival in marsupial visual development, Neurosci. Lett. 86: 147–154.PubMedCrossRefGoogle Scholar
  52. Cunningham, R. H., 1898, The cortical motor centres of the opossum, Didelphis virginiana, J. Physiol. (London) 22: 264–269.Google Scholar
  53. DAmato, C. J., and Hicks, S. P., 1978, Normal development and post-traumatic plasticity of corticospinal neurons in rats, Exp. Neurol. 60: 557–569.PubMedCrossRefGoogle Scholar
  54. Darian-Smith, I., Isbister, J., Mok, H., and Yokota, T., 1966, Somatic sensory cortical projection areas excited by tactile stimulation of the cat: A triple representation, J. Physiol. (London) 182: 671–689.Google Scholar
  55. Dawson, T. J., 1983, Monotremes and Marsupials: The Other Mammals, Arnold, London, pp. 1–87.Google Scholar
  56. Diamond, I. T., 1979, The subdivisions of neocortex: A proposal to revise the traditional view of sensory, motor and association areas, Prog. Psychobiol. Physiol. Psychol. 8: 1 — 43.Google Scholar
  57. Diamond, I. T, and Hall, W C., 1969, Evolution of neocortex, Science 164: 251–262.PubMedCrossRefGoogle Scholar
  58. Diamond, I. T., and Utley, J. D., 1963, Thalamic retrograde degeneration study of sensory cortex in opossum, J. Comp. Neurol. 120: 129–160.PubMedCrossRefGoogle Scholar
  59. Divac, L, Hoist, M.-C, Nelson, J., and McKenzie, J. S., 1987a, Afférents of the frontal cortex in the echidna (Tachyglossus aculeatus). Indication of an outstandingly large prefrontal area, Brain Behav. Evol. 30: 303–320.Google Scholar
  60. Divac, I., Pettigrew, J. D., Holst, M.-C., and McKenzie, J. S., 1987b, Efferent connections of the prefrontal cortex of echidna (Tachyglossus aculeatus), Brain Behau Evol. 30: 321–327.CrossRefGoogle Scholar
  61. Dubois, E., 1897, Sur 1e rapport du poids de l’encéphale avec la grandeur du corps chez mammifères, Bull Soc. Anthropol. Paris [4] 8: 337–376.Google Scholar
  62. Ebner, F. F., 1967, Afferent connections to neocortex in the opossum (Didelphis virginiana), J. Comp. Neurol. 129: 241–268.PubMedCrossRefGoogle Scholar
  63. Ebner, F. F., 1969, A comparison of primitive forebrain organization in metatherian and eutherian mammals, Ann. N.Y. Acad. Sci. 167: 241–257.CrossRefGoogle Scholar
  64. Elliot Smith, G., 1902, Descriptive and illustrated catalogue of the physiological series of comparative anatomy, in: R. Coll. Surg. Mus. Cat. Physiol. Ser. Volume 2, 2nd ed., Taylor & Francis, London.Google Scholar
  65. Ferrington, D. G., and Rowe, M. J., 1980, Differential contributions to the coding of cutaneous vibratory information by cortical somatosensory areas I and II, J. Neurophysiol. 43: 310–331.PubMedGoogle Scholar
  66. Fisher, A. M., Harting, J. K., Martin, G. F., and Stuber, M. I., 1969, The origin, course and termination of corticospinal fibers in the armadillo (Dasypus novemcinctus mexicanus), J. Neurol. Sci. 8: 347–361.PubMedCrossRefGoogle Scholar
  67. Fisher, G. R., Freeman, B., and Rowe, M. J., 1983, Organization of the parallel projections from Pacinian afferent fibers to somatosensory cortical areas I and II in the cat, J. Neurophysiol. 49: 75–97.PubMedGoogle Scholar
  68. Foster, R. E., and Donoghue, J. P., 1979, Ipsilateral corticocortical connections of the SI forepaw area in the parietal cortex of the Virginia opossum, Anat. Rec. 193: 540–541.Google Scholar
  69. Foster, R. E., and Ebner, F. F., 1977, Interhemispheric connections between the neocortical forepaw representations in the Virginia opossum, Soc. Neurosci. Abstr. 3: 67.Google Scholar
  70. Foster, R. E., Donoghue, J. P., and Ebner, F. F., 1981, Laminar organization of efferent cells in the parietal cortex of the Virginia opossum, Exp. Brain Res. 43: 330–336.PubMedCrossRefGoogle Scholar
  71. Fuster, J. M., 1980, The Prefrontal Cortex, Raven Press, New York.Google Scholar
  72. Gates, G. R., and Aitkin, L. M., 1982, Auditory cortex in the marsupial possum Trichosurus vulpecula, Hearing Res. 7: 1–11.CrossRefGoogle Scholar
  73. Gates, G. R., Saunders, J. C., Bock, G. R., Aitkin, L. M., and Elliott, M. A., 1974, Peripheral auditory function in the platypus, Ornithorhynchus anatinus, J. Acoust. Soc. Am. 56: 152–156.PubMedCrossRefGoogle Scholar
  74. Gerard, R. W., Marshall, W. H., and Saul, L. J., 1936, Electrical activity of the cat’s brain, Arch. Neurol. Psychiatry 36: 675–738.CrossRefGoogle Scholar
  75. Goldby, F., 1939a, An experimental investigation of the motor cortex and pyramidal tract of Echidna aculeata, J. Anat. 73: 509–524.PubMedGoogle Scholar
  76. Goldby, F., 1939b, An experimental investigation of the motor cortex and its connexions in the phalanger, Trichosurus vulpecula, J. Anat. 74: 12–33.PubMedGoogle Scholar
  77. Goldby, F., 1943, An experimental study of the thalamus in the phalanger, Trichosurus vulpecula, J. Anat. 77: 195–224.PubMedGoogle Scholar
  78. Goldby, F., and Gamble, H. J., 1957, The reptilian cerebral hemispheres, Biol. Rev. 32: 383–420.CrossRefGoogle Scholar
  79. Gould, H. J., Hall, W. C., and Ebner, F. F., 1978, Connections of the visual cortex in the hedgehog (Paraechinus hypomelas), J. Comp. Neurol. 177: 445–472.PubMedCrossRefGoogle Scholar
  80. Grant, T., 1984, The Platypus, New South Wales University Press, Sydney.Google Scholar
  81. Gray, P. A., Jr., 1924, The cortical lamination pattern of the opossum, Didelphys virginiana, J. Comp. Neurol. 37: 221–263.CrossRefGoogle Scholar
  82. Gregory, J. E., Iggo, A., McIntyre, A. K., and Proske, U., 1987, Electroreceptors in the platypus, Nature 326: 386–387.PubMedCrossRefGoogle Scholar
  83. Gregory, E., Iggo, A., Mclntyre, A. K., and Proske, U., 1988, Receptors in the bill of the platypus, J. Physiol. (London) 400: 349–366.Google Scholar
  84. Griffiths, M., 1978, The Biology of the Monotrernes, Academic Press, New York.Google Scholar
  85. Griffiths, M., 1988, The platypus, Sci. Am. 256: 84–90.CrossRefGoogle Scholar
  86. Haight, J. R., and Murray, P. F., 1981, The cranial endocast of the early Miocene marsupial, Wynyardia bassiana: An assessment of taxonomic relationships based upon comparisons with recent forms, Brain Behau Evol. 19: 17–36.CrossRefGoogle Scholar
  87. Haight, J. R., and Neylon, L., 1978a, Morphological variation in the brain of the marsupial brushtailed possum, Trichosurus vulpecula, Brain Behau Evol. 15: 415–445.CrossRefGoogle Scholar
  88. Haight, J. R., and Neylon, L., 1978b, The organization of neocortical projections from the ventroposterior thalamic complex in the marsupial brush-tailed possum, Trichosurus vulpecula: A horseradish peroxidase study, J. Anat. 126: 459–485.PubMedGoogle Scholar
  89. Haight, J. R., and Neylon, L., 1979, The organization of neocortical projections from the ventrolateral thalamic nucleus in the brush-tailed possum, Trichosurus vulpecula, and the problem of motor and somatic sensory convergence within the mammalian brain, J. Anat. 129: 673–694.PubMedGoogle Scholar
  90. Haight, J. R., Sanderson, K.J., Neylon, L., and Patten, G. S., 1980, Relationships of the visual cortex in the marsupial brushtailed possum, Trichosurus vulpecula: A horseradish peroxidase and autoradiographic study, J. Anat. 131: 387–413.PubMedGoogle Scholar
  91. Hall, R. D., and Lindholm, E. P., 1974, Organization of motor and somatosensory neocortex in the albino rat, Brain Res. 66: 23–38.CrossRefGoogle Scholar
  92. Harman, P. J., 1947, Quantitative analysis of the brain-isocortex relationship in Mammalia, Anat. Rec. 97: 342.PubMedGoogle Scholar
  93. Hassler, R., and Muhs-Clement, K., 1964, Architektonischer Aufbau des sensomotorischen und Parietalen Cortex der Katze, J. Hirnforsch. 6: 377–420.Google Scholar
  94. Hayhow, W. R., 1967, The lateral geniculate nucleus of the marsupial phalanger, Trichosurus vulpecula. An experimental study in relation to the intranuclear optic nerve projection fields, J. Comp. Neurol. 131: 571–604.PubMedCrossRefGoogle Scholar
  95. Heath, C. J., and Jones, E. G., 1971, Interhemispheric pathways in the absence of the corpus callosum, J. Anat. 109: 253–270.PubMedGoogle Scholar
  96. Herrick, C. L., 1898, The cortical motor centres in lower mammals, J. Comp. Neurol. 8: 92–98.CrossRefGoogle Scholar
  97. Hines, M., 1929, The brain of Ornithorhynchus anatinus, Philos. Trans. R. Soc. London Ser. B 217: 155–259.CrossRefGoogle Scholar
  98. Hore, J., Phillips, C. G., and Porter, R., 1973, The effects of pyramidotomy on motor performance in the brush-tailed possum (Trichosurus vulpecula), Brain Res. 49: 181–184.PubMedCrossRefGoogle Scholar
  99. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (London) 160: 106–154.Google Scholar
  100. Hubel, D. H., and Wiesel, T. N., 1965, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, J. Neurophysiol. 28: 229–289.PubMedGoogle Scholar
  101. Hummelsheim, H., and Wiesendanger, M., 1985, Is the hindlimb representation of the rat’s cortex a “sensorimotor amalgam”? Brain Res. 346: 75–81.PubMedCrossRefGoogle Scholar
  102. Ivy, G. O., and Killackey, H. P., 1982, Ontogenetic changes in the projections of neocortical neurons, J. Neurosci. 2: 735–743.PubMedGoogle Scholar
  103. Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York.Google Scholar
  104. Jenny, A. B., 1979, Commissural projections of the cortical hand motor areas in monkeys, J. Comp. Neurol. 188: 137–146.PubMedCrossRefGoogle Scholar
  105. Jerison, H. J., 1961, Quantitative analysis of evolution of the brain in mammals, Science 133: 1012–1014.PubMedCrossRefGoogle Scholar
  106. Jerison, H. J., 1973, Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  107. Johnson, J. I., 1977, Central nervous system of marsupials, in: The Biology of Marsupials ( D. Hunsaker, ed.), Academic Press, New York, pp. 157–278.Google Scholar
  108. Johnson, J. I., Haight, J. R., and Megirian, D., 1973, Convolutions related to sensory projections in cerebral neocortex of marsupial wombats, J. Anat. 114: 153 (abstr.).Google Scholar
  109. Johnson, J. I., Rubel, E. W, and Hatton, G. I., 1974, Mechanosensory projections to the cerebral cortex of sheep, J. Comp. Neurol. 158: 81–108.PubMedCrossRefGoogle Scholar
  110. Jones, E. G., 1985, The Thalamus, Plenum Press, New York.Google Scholar
  111. Jones, E. G., 1986, Connectivity of the primate sensory-motor cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 113–183.Google Scholar
  112. Jones, E. G., and Wise, S. P., 1977, Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys, J. Comp. Neurol. 75: 391–438.CrossRefGoogle Scholar
  113. Joschko, M. A., and Sanderson, K. J., 1987, Cortico-cortical connections of the motor cortex in the brushtailed possum (Trichosurus vulpecula), J. Anat. 150: 31–42.PubMedGoogle Scholar
  114. Kaas, J. H., 1980, A comparative survey of visual cortex organization in mammals, in: Comparative Neurology of the Telencephalon ( S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 483–502.CrossRefGoogle Scholar
  115. Kato, H., Bishop, P. O., and Orban, G. A., 1978, Hypercomplex and simple/complex cell classifications in cat striate cortex, J. Neurophysiol. 41: 1071–1095.PubMedGoogle Scholar
  116. Killackey, H. P., and Ebner, F. F., 1972, Two different types of thalamocortical projections to a single cortical area in mammals, Brain Behav. Evol. 6: 141–169.PubMedCrossRefGoogle Scholar
  117. Killackey, H., and Ebner, F., 1973, Convergent projection of three separate thalamic nuclei on to a single cortical area, Science 179: 283–285.PubMedCrossRefGoogle Scholar
  118. Kirsch, J. A. W, 1977, The classification of marsupials, in: The Biology of Marsupials ( D. Hunsaker, ed.), Academic Press, New York, pp. 1–50.Google Scholar
  119. Lende, R. A., 1963a, Sensory representation in the cerebral cortex of the opossum (Didelphis virginiana), J. Comp. Neurol. 121: 395–403.PubMedCrossRefGoogle Scholar
  120. Lende, R. A., 1963b, Motor representation in the cerebral cortex of the opossum (Didelphis virginiana), J. Comp. Neurol. 121: 405–415.PubMedCrossRefGoogle Scholar
  121. Lende, R. A., 1963c, Cerebral cortex: A sensorimotor amalgam in the Marsupialia, Science 141: 730–732.PubMedCrossRefGoogle Scholar
  122. Lende, R. A., 1964, Representation in the cerebral cortex of a primitive mammal. Sensorimotor, visual, and auditory fields in the echidna (Tachyglossus aculeatus), J. Neurophysiol. 27: 37–48.PubMedGoogle Scholar
  123. Lende, R. A., 1969, A comparative approach to the neocortex: Localization in monotremes, marsupials and insectivores, Ann. N.Y. Acad. Sci. 167: 262–276.CrossRefGoogle Scholar
  124. Lende, R. A., and Sadler, K. M., 1967, Sensory and motor areas in neocortex of hedgehog (Erinaceus), Brain Res. 5: 390–405.PubMedCrossRefGoogle Scholar
  125. Lende, R. A., and Woolsey, C. N., 1956, Sensory and motor localization in cerebral cortex of porcupine (Erithizon dorsatum), J. Neurophysiol. 19: 544–563.PubMedGoogle Scholar
  126. Leonard, C. M., 1972, The connections of the dorsomedial nuclei, Brain Behau Evol. 6: 524–541.CrossRefGoogle Scholar
  127. LeVay, S., and Sherk, H., 1981, The visual claustrum of the cat. I. Structure and connections, J. Neurosci. 1: 956–980.PubMedGoogle Scholar
  128. Lyne, G., 1967, Marsupials and Monotremes cf Australia, Angus & Robertson, Sydney.Google Scholar
  129. Magalhäes-Castro, B., and Saraiva, P. E. S., 1971, Sensory and motor representation in the cerebral cortex of the marsupial Didelphis azarae azarae, Brain Res. 34: 291–299.PubMedCrossRefGoogle Scholar
  130. Marshall, W. H., Woolsey, C. N., and Bard, P., 1941, Observations on cortical somatic sensory mechanisms of cat and monkey, J. Neurophysiol. 4: 1–24.Google Scholar
  131. Martin, C. J., 1898, Cortical localisation in Ornithorhynchus, J. Physiol. (London) (Suppl.) 23: 383–385.Google Scholar
  132. Martin, G. F., Megirian, D., and Roebuck, A., 1970, The corticospinal tract of the marsupial phalanger (Trichosurus vulpecula), J. Comp. Neurol. 139: 245–257.PubMedCrossRefGoogle Scholar
  133. Martin, G. F., Megirian, D., and Conner, J. B., 1972, The origin, course and termination of the corticospinal tracts of the Tasmanian potoroo (Potorous apicalis), J. Anat. 111: 263–281.PubMedGoogle Scholar
  134. Martin, G. F., Beals, J. K., Culberson, J. C., Dom, R., and Humbertson, A. O., 1978, Observations on the development of brainstem-spinal systems in the North American opossum, J. Comp. Neurol. 181: 271–290.PubMedCrossRefGoogle Scholar
  135. Merzenich, M. M., and Brugge, J. F., 1973, Representation of the cochlear partition on the superior temporal plane of the macaque monkey, Brain Res. 50: 275–296.PubMedCrossRefGoogle Scholar
  136. Merzenich, M. M., Knight, P. L., and Roth, G. L., 1975, Representation of cochlea within primary auditory cortex in the cat, J. Neurophysiol. 38: 231–249.PubMedGoogle Scholar
  137. Merzenich, M. M., Kaas, J. H., and Roth, G. L., 1976, Auditory cortex in the grey squirrel: Tonotopic organization and architectonic fields, J. Comp. Neurol. 166: 387–401.PubMedCrossRefGoogle Scholar
  138. Meyer, J., 1981, A quantitative comparison of the parts of the brains of two Australian marsupials and some eutherian mammals, Brain Behau Evol. 18: 60–71.CrossRefGoogle Scholar
  139. Moeller, H., 1973, Zur Evolutions höhe des Marsupialia gehirns, Zool. Jahrb. Abt. Anat. Ontog. Tiere 91: 434–448.Google Scholar
  140. Molliver, M. E., Kostovic, I., and Van der Loos, H., 1973, The development of synapses in cerebral cortex of the human fetus, Brain Res. 50: 403–407.PubMedCrossRefGoogle Scholar
  141. Morest, D. K., 1964, The neuronal architecture of the medial geniculate body in the cat, J. Anat. 98: 611–630.PubMedGoogle Scholar
  142. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatosensory cortex, J. Neurophysiol. 20: 408–434.PubMedGoogle Scholar
  143. Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain ( G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, Mass., pp. 7–50.Google Scholar
  144. Mountcastle, V. B., 1986, The neural mechanisms of cognitive function can now be studied directly, Trends Neurosci. 9: 505–508.CrossRefGoogle Scholar
  145. Murphy, E. H., and Berman, N., 1979, The rabbit and the cat: A comparison of some features of response properties of single cells in the primary visual cortex, J. Comp. Neurol. 188: 401–428.PubMedCrossRefGoogle Scholar
  146. Nelson, J. E., 1987, The early development of the eye of the pouch-young of the marsupial Dasyurus hallucatus, Anat. Embryol. 175: 387–398.PubMedCrossRefGoogle Scholar
  147. Nelson, J. E., and Stephan, H., 1982, Encephalization in Australian marsupials, in: Australian Carnivorous Marsupials ( M. Archer, ed.), Royal Zoological Society of New South Wales, Sydney, pp. 699–706.Google Scholar
  148. Norita, M., 1983, Claustral neurons projecting to the visual cortical areas in the cat: A retrograde double labelling study, Neurosci. Lett 36: 33–36.PubMedCrossRefGoogle Scholar
  149. Ogren, M., and Hendrickson, A., 1976, Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: Evidence for a reciprocal pulvinar connection, Exp. Neurol. 53: 780–800.PubMedCrossRefGoogle Scholar
  150. Packer, A. D., 1941, An experimental investigation of the visual system in the phalanger, Trichosurus vulpecula, J. Anat. 75: 309–329.PubMedGoogle Scholar
  151. Pandya, D. N., and Yeterian, E. H., 1985, Architecture and connections of cortical association areas, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 3–61.Google Scholar
  152. Penfield, N., and Boldrey, E., 1937, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation, Brain 60: 389–443.CrossRefGoogle Scholar
  153. Petras, J. M., 1969, Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores, Ann. N.Y. Acad. Sci. 167: 469–505.CrossRefGoogle Scholar
  154. Pirlot, P., and Nelson, J., 1978, Volumetric analyses of monotreme brains, Aust. Zool. 20: 171–179.Google Scholar
  155. Porter, R., 1955, Antidromic conduction of volleys in the pyramidal tract, J. Neurophysiol. 18: 138–150.PubMedGoogle Scholar
  156. Potter, H., and Nauta, W. J. H., 1979, A note on the problem of olfactory associations of the orbitofrontal cortex in the monkey, Neuroscience 4: 361–367.PubMedCrossRefGoogle Scholar
  157. Poulton, E. B., 1885, On the tactile terminal organ and other structures in the bill of Ornithorhynchus, J. Physiol. (London) 5: 15–16.Google Scholar
  158. Poulton, E. B., 1894, The structure of the bill and hairs of Ornithorhynchus paradoxus with a discussion of the homologies and origin of mammalian hair, Q. J. Microsc. Sci. 36: 143–199.Google Scholar
  159. Powell, T. P. S., Cowan, W. M., and Raisman, G., 1965, The central olfactory connections, J. Anat. 99: 791.PubMedGoogle Scholar
  160. Pubols, B. H., 1968, Retrograde degeneration study of somatic sensory thalamocortical connections in brain of Virginia opossum, Brain Res. 7: 232–251.PubMedCrossRefGoogle Scholar
  161. Pubols, B. H., 1977, The second somatic sensory area (SmII) of opossum neocortex, J. Comp. Neurol. 174: 71–78.PubMedCrossRefGoogle Scholar
  162. Pubols, B. H., Jr., and Pubols, L. M., 1971, Somatotopic organisation of spider monkey somatic sensory cerebral cortex, J. Comp. Neurol. 141: 63–76.PubMedCrossRefGoogle Scholar
  163. Pubols, B. H., Donovick, P. J., and Pubols, L. M., 1973, Opossum trigeminal afferents associated with vibrissal and rhinarial mechanoreceptors, Brain Behav. Evol. 7: 360–381.PubMedCrossRefGoogle Scholar
  164. Pubols, B. H., Pubols, L. M., Dipette, D. J., and Sheely, J. C., 1976, Opossum somatic sensory cortex: A microelectrode mapping study, J. Comp. Neurol. 165: 229–246.PubMedCrossRefGoogle Scholar
  165. Ravizza, R., Heffner, H., and Masterton, B., 1969, Hearing in primitive mammals. I: Opossum (Didelphis virginiana), J. Aud. Res. 9: 1–7.Google Scholar
  166. Reale, R. A., and Imig, T. J., 1980, Tonotopic organization in auditory cortex of the cat, J. Comp. Neurol. 192: 265–292.PubMedCrossRefGoogle Scholar
  167. Rees, S., and Hore, J., 1970, The motor cortex of the brush-tailed possum (Trichosurus vulpecula): Motor representation, motor function and the pyramidal tract, Brain Res. 20: 439–452.PubMedCrossRefGoogle Scholar
  168. Regidor, J., and Divac, I., 1987, Architectonics of the thalamus in the echidna (Tachyglossus aculeatus): Search for the mediodorsal nucleus, Brain Behav. Evol. 30: 328–341.PubMedCrossRefGoogle Scholar
  169. Renfree, M. B., Holt, A. B., Green, S. W., Carr, J. P., and Cheek, D. B., 1982, Ontogeny of the brain in a marsupial (Macropus eugenii) throughout pouch life, Brain Behav. Evol. 20: 57–71.PubMedCrossRefGoogle Scholar
  170. Reynolds, M. L., and Saunders, N. R., 1988, Differentiation of the neocortex, in: The Developing Marsupial ( C. H. Tyndale-Biscoe and P. A. Janssens, eds.), Springer-Verlag, Berlin, pp. 101–116.CrossRefGoogle Scholar
  171. Reynolds, M. L., Cavanagh, M. E., Dziegieliewska, K. M., Hinds, L. A., Saunders, N R., and Tyndale-Biscoe, C. H., 1985, Postnatal development of the telencephalon of the tammar wallaby (Macropus eugenii). An accessible model of neocortical differentiation, Anat. Embryol. 173: 81–94.PubMedCrossRefGoogle Scholar
  172. Rezak, M., and Benevento, L. A., 1979, A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey, Brain Res. 167: 19–40.PubMedCrossRefGoogle Scholar
  173. Robinson, C. J., and Burton, H., 1980, Somatotopographic organization in second somatosensory area of M. fascicularis, J. Comp. Neurol. 192: 43–68.PubMedCrossRefGoogle Scholar
  174. Rocha-Miranda, C. E., Linden, R., Volchan, E., Lent, R., and Bombardieri, R., 1976, Receptive field properties of single units in the opossum striate cortex, Brain Res. 104: 197–219.PubMedCrossRefGoogle Scholar
  175. Rockel, A. J., Heath, C. J., and Jones, E. G., 1972, Afferent connections to the diencephalon in the marsupial phalanger and the question of sensory convergence in the ‘posterior group’ of the thalamus, J. Comp. Neurol. 145: 105–130.PubMedCrossRefGoogle Scholar
  176. Rose, J. E., and Woolsey, C. N., 1948, The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat, Proc. Assoc. Res. Nerv. Ment. Dis. 27: 210–232.Google Scholar
  177. Rowe, M. J., Ferrington, D. G., Fisher, G. R., and Freeman, B., 1985, Parallel processing and distributed coding for tactile vibratory information within the sensory cortex, in: Development, Organization and Processing in Somatosensory Pathways ( M.J. Rowe and W. D. Willis, eds.), Liss, New York, pp. 247–258.Google Scholar
  178. Royce, G. J., Ward, J. P., Bade, B. B., and Harting, J. K., 1975, Retinogeniculate pathways in two marsupial opossums, Didelphis virginiana and Marmosa mitis, Anat. Rec. 181: 467–468.Google Scholar
  179. Royce, G. J., Ward, J. P., and Harting, J. K., 1976, Retinofugal pathways in two marsupials, J. Comp. Neurol. 170: 391–414.PubMedCrossRefGoogle Scholar
  180. Sanderson, K. J., Pearson, L. J., and Dixon, P. G., 1978, Altered retinal projections in brush-tailed possum, Trichosurus vulpecula, following removal of one eye, J. Comp. Neurol. 180: 841–868.PubMedCrossRefGoogle Scholar
  181. Sanderson, K.J., Haight, J. R., and Pearson, L. J., 1980, Transneuronal transport of tritiated fucose and proline in the visual pathways of the brushtailed possum, Trichosurus vulpecula, Neurosci. Lett. 20: 243–248.PubMedCrossRefGoogle Scholar
  182. Sanderson, K. J., Welker, W., and Shambes, G. M., 1984, Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats, Brain Res. 292: 251–260.PubMedCrossRefGoogle Scholar
  183. Sanides, F., 1972, Representation in the cerebral cortex and its areal lamination patterns, in: Structure and Function of the Nervous System, Volume 5 ( G. H. Bourne, ed.), Academic Press, New York, pp. 329–453.Google Scholar
  184. Saraiva, P., and Magalhäes-Castro, B., 1975, Sensory and motor representation in the cerebral cortex of the three-toed sloth (Bradypus tridactylus), Brain Res. 90: 181–193.PubMedCrossRefGoogle Scholar
  185. Saunders, N. R., 1985, Plasma proteins and cerebral cortical development, in: Development, Organization, and Processing in Somatosensory Pathways ( M. J. Rowe and W. D. Willis, eds.), Liss, New York, pp. 79–86.Google Scholar
  186. Scheich, H., Langner, G., Tidemann, C., Coles, R. B., and Guppy, A., 1986, Electroreception and electrolocation in platypus, Nature 319: 401–402.PubMedCrossRefGoogle Scholar
  187. Schuster, E., 1910, Preliminary note upon the cell lamination of the cerebral cortex of the echidna, with an enumeration of the fibres in the cranial nerves, Proc. R. Soc. Med. Ser. B 82: 113–123.CrossRefGoogle Scholar
  188. Sherk, H., 1986, The claustrum and the cerebral cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 467–499.Google Scholar
  189. Simons, D. J., 1978, Response properties of vibrissa units in rat SI somatosensory neocortex, J. Neurophysiol. 41: 798–820.PubMedGoogle Scholar
  190. Snell, O., 1891, Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten, Arch. Psychiatr. Nervenkr. 23: 436–446.CrossRefGoogle Scholar
  191. Sousa, R., Aglai, P. B., Gattass, R., and Oswaldo-Cruz, E., 1978, The projection of the opossum’s visual field on the cerebral cortex, J. Comp. Neurol. 177: 569–588.PubMedCrossRefGoogle Scholar
  192. Stanfield, B. B., O’Leary, D. D. M., and Fricks, C., 1982, Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurons, Nature 298: 371–373.PubMedCrossRefGoogle Scholar
  193. Stephan, H., Bauchot, R., and Andy, O. J., 1970, Data on size of the brain and various parts in insectivores and primates, in: The Primate Brain ( C. R. Noback and W. Montagna, eds.), Appleton, New York, pp. 289–297.Google Scholar
  194. Stone, J., 1983, Parallel Processing in the Visual System, Plenum Press, New York.CrossRefGoogle Scholar
  195. Suga, N., and Jen, P. H. S., 1976, Disproportionate tonotopic representation for processing CF-FM sonar signals in the moustache bat auditory cortex, Science 194: 542–544.PubMedCrossRefGoogle Scholar
  196. Tyndale-Biscoe, C. H., 1973, The Life of Marsupials, Arnold, London.Google Scholar
  197. Tyndale-Biscoe, C. H., and Renfree, M., 1987, Reproductive Physiology of Marsupials, Cambridge University Press, London.CrossRefGoogle Scholar
  198. Ulinski, P. S., 1984, Thalamic projections to the somatosensory cortex of the echidna, Tachyglossus aculeatus, J. Comp. Neurol. 229: 153–170.PubMedCrossRefGoogle Scholar
  199. Van der Loos, H., and Welker, E., 1985, Development and plasticity of somatosensory brain maps, in: Development, Organization, and Processing in Somatosensory Pathways ( M. J. Rowe and W. D. Willis, eds.), Liss, New York, pp. 53–67.Google Scholar
  200. Van Essen, D. C., 1979, Visual areas of the mammalian cerebral cortex, Annu. Rev. Neurosci. 2: 227–263.PubMedCrossRefGoogle Scholar
  201. Van Essen, D. C., and Maunsell, J. H. R., 1983, Hierarchical organization and functional streams in the visual cortex, Trends Neurosci. 6: 370–375.CrossRefGoogle Scholar
  202. Vogt, C., and Vogt, O., 1906, Zur Kentniss der elektrisch erregbaren Hirnrindgebiet bei der Säugetieren, J. Psychol. Neurol. 8: 277–456.Google Scholar
  203. von Bonin, G., 1937, Brain weight and body weight in mammals, J. Gen. Psychol. 16: 379–389.CrossRefGoogle Scholar
  204. Ward, L., and Watson, C. R. R., 1973, An experimental study of the ventrolateral nucleus of the brush-tailed possum, J. Anat. 116: 472.PubMedGoogle Scholar
  205. Welker, C., 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol. 166: 173–190.PubMedCrossRefGoogle Scholar
  206. Welker, W, and Lende, R. A., 1980, Thalamocortical relationships in echidna (Tachyglossus aculeatus), in: Comparative Neurology of the Telencephalon ( S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 449–481.CrossRefGoogle Scholar
  207. Welker, W. I., and Seidenstein, S., 1959, Somatic sensory representation in the cerebral cortex of the racoon (Procyon lotor), J. Comp. Neurol. 111: 469–502.PubMedCrossRefGoogle Scholar
  208. Weller, W. L., 1972, Barrels in somatic sensory neocortex of the marsupial Trichosurus vulpecula, Brain Res. 43: 11–24.PubMedCrossRefGoogle Scholar
  209. Weller, W. L., and Haight, J. R., 1973, Barrels and somatotopy in SI neocortex of the brush-tailed possum, J. Anat. 116: 474.PubMedGoogle Scholar
  210. Weller, W. L., Haight, J. R., Neylon, L., and Johnson, J. L, 1977, A re-assessment of the mechanoreceptor projections to cerebral neocortex in marsupial wallabies (Thylogale), J. Anat. 124: 531–532.Google Scholar
  211. Werner, G., and Whitsel, B. L., 1973, Functional organisation of the somatosensory cortex, in: Handbook of Sensory Physiology. II. Somatosensory System ( A. Iggo, ed.), Springer-Verlag, Berlin, pp. 621–700.Google Scholar
  212. Whitsel, B. L., Petrucelli, L. M., and Werner, G., 1969, Symmetry and connectivity in the map of the body surface in somatosensory area II of primates, J. Neurophysiol. 32: 170–183.PubMedGoogle Scholar
  213. Wilson, J. T., and Martin, C. J., 1893, On the peculiar rod-like tactile organs in the integument and mucous membrane of the muzzle of Ornithorynchus, in: The Macleay Memorial Volume ( J. J. Fisher, ed.), Linn. Soc. N.S W, Sydney, pp. 190–200.Google Scholar
  214. Wilson, J. T., and Martin, C. J., 1894, Further observations upon the anatomy of the integumentary structures in the muzzle of Ornithorhynchus, Proc. Linn. Soc. N.S.W. Ser. 2 9: 660–681.Google Scholar
  215. Woolsey, C. N., 1952, Patterns of localization in sensory and motor areas of the cerebral cortex, in: Biology of Mental Health and Disease, Hoeber, New York, pp. 193–206.Google Scholar
  216. Woolsey, C. N., 1958, Organization of somatic sensory and motor areas of the cerebral cortex, in: Biological and Biochemical Bases of Behavior ( H. F. Harlow and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 63–81.Google Scholar
  217. Woolsey, C. N., 1964, Cortical localization as defined by evoked potential and electrical stimulation studies, in: Cerebral Localization and Organization ( G. Schaltenbrand and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 17–32.Google Scholar
  218. Woolsey, C. N., and Fairman, D., 1946, Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep and other mammals, Surgery 19: 684–702.PubMedGoogle Scholar
  219. Woolsey, T. A., and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectural units, Brain Res. 17: 205–242.PubMedCrossRefGoogle Scholar
  220. Zecevic, N. R., and Molliver, M. E., 1978, The origin of the monoaminergic innervation of immature rat neocortex: An ultrastructural analysis following lesions, Brain Res. 150: 387–397.PubMedCrossRefGoogle Scholar
  221. Ziehen, T., 1897, Das Centralnervensystem der Monotremen und Marsupialier. I. Theil: Makroskopische Anatomie, in: Zoologische Forschungsreisen in Australien und dem Malayischen Archipel (R. Semon, ed.), Volume 3, Denkschiften der medicinisch-Naturwissenschaftlichen Gesellschaft zu Jena, Fischer, Jena, 6: 677–728.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Mark Rowe
    • 1
  1. 1.School of Physiology and PharmacologyUniversity of New South WalesSydneyAustralia

Personalised recommendations