Skip to main content

Photochromics for the Future

  • Chapter
Electronic Materials

Abstract

A photochromic organic compound A is a compound that undergoes a major reversible color change on irradiation at an appropriate wavelength (λa) to form a more highly colored species B, which undergoes the reverse reaction either thermally or photochemically on irradiation at a second wavelength (λb):

$$ A\mathop{ \rightleftharpoons }\limits_{{{{\lambda }_{b}}orheat}}^{{{{\lambda }_{a}}}} B $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. ter Meer, Über Dinitroverbindungen der Fettreihe, Annalen 181, 1–22 (1876).

    Google Scholar 

  2. Y. Hirshberg, Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model, J. Am. Chem. Soc. 78, 2304–2312 (1956).

    Article  Google Scholar 

  3. G. H. Brown, Photochromism, Techniques of Chemistry, Vol. 3, Wiley Interscience, New York (1971).

    Google Scholar 

  4. Y. Hirshberg, Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model, J. Am. Chem. Soc. 78, 2304–2312 (1956).

    Article  Google Scholar 

  5. H. G. Heller, S. N. Oliver, I. Tomlinson, and J. Whittall, Patent 0246 114 (1987).

    Google Scholar 

  6. R. B. Woodward and R. Hoffmann, Conservation of orbital symmetry. Ac. Chem. Res. 1, 17–22 (1968).

    Article  Google Scholar 

  7. E. N. Marvell, G. Caple, and B. Schatz, Thermal valence isomerizations. Stereochemistry of the 2,4,6-octatriene to 5,6-dimethyl-1,3-cyclohexadiene ring closure, Tetrahedron Lett. 385–389 (1965).

    Google Scholar 

  8. H. Stobbe, Die Fulgide, Annalen 380, 1–129 (1911).

    Google Scholar 

  9. R. J. Hart and H. G. Heller, Overcrowded molecules—Part 7: Thermal and photochemical reactions of photochromic (E)- and (Z)-benzylidene(diphenylmethylene)succinic anhydrides and imides. J. Chem. Soc. Perkin Trans. 1, 1487–1492 (1972).

    Google Scholar 

  10. H. G. Heller, P. J. Darcy, S. Patharakorn, R. D. Piggott, and J. Whittall, Photochromic systems-Part 1: Photochemical studies on (E)-2-isopropylidene-3-[l-(3,4,5-trimethoxyphenyl) ethylidene]succinic trihydride and related compounds, J. Chem. Soc. Perkin Trans. 1, 315–319 (1986).

    Google Scholar 

  11. H. G. Heller and R. M. Megit, Overcrowded molecules—Part 9: Fatigue-free photochromic systems involving (E)-2-isopropylidene-3-(mesitylmethylene)succinic anhydride and N-phenylimide, J. Chem. Soc. Perkin Trans. 1, 923–927 (1974). H. G. Heller and H. Gonzenbach, unpublished results.

    Google Scholar 

  12. H. G. Heller and J. R. Langan, Photochromic heterocyclic fulgides- Part 3: The use of (E)-α-(2,5dimethyl-3-furylethylidene (isopropylidene) succinic anhydride as a simple convenient chemical actinometer, J. Chem. Soc. Perkin Trans. II, 341 (1981).

    Google Scholar 

  13. M. Irie and M. Mohri, Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J. Org. Chem. 53, 803–808 (1988).

    Article  Google Scholar 

  14. H. G. Heller, Organic fatigue-resistant photochromic imaging materials, TEE Proc. 150, 209–211 (1983).

    Google Scholar 

  15. H. G. Heller, S. A. Harris, W. Johncock, S. N. Oliver, P. J. Strydom, and J. Whittall, Photochromic heterocyclic fulgides. Part 4. The thermal and photochemical reactions of (E)-isopropylidene-[α-2and 3-(3-thienyl)ethylidene]succinic anhydrides and related compounds, J. Chem. Soc. Perkin Trans. 1, 957–961 (1985).

    Google Scholar 

  16. Y. Kurita, Y. Yokoyama, T. Goto, T. Inoue, and M. Yokoyama, Fulgides as efficient photochromic compounds. Role of the substituent on furylalkylidene moiety of furyl fulgides in the photoreaction. Chem. Lett.1049–1052 (1988).

    Google Scholar 

  17. H. G. Heller, New fatigue-resistant organic photochromic materials, The Royal Society of Chemistry Special Publication No. 60. Fine Chemicals for the Electronics Industry. pp. 120–135 (1986).

    Google Scholar 

  18. H. G. Heller, B. Helliwell, and D. Wood, unpublished results.

    Google Scholar 

  19. H. G. Heller, S. N. Oliver, J. Whittall, W. Johncock, P. J. Darcy, and C. Trundle, Photochromic compounds and their uses in photoreactive lenses, E.P.A. 0 140540 (1984).

    Google Scholar 

  20. T. Tanaka, S. Imura, and Y. Kida, Photochromic compounds, E.P.A. 0 316179 (1988).

    Google Scholar 

  21. R. S. Becker and J. Kolc, Proof of structure of the coloured photoproducts of chromenes and spiropyrans, J. Phys. Chem. 71, 4045–4047 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heller, H.G. (1991). Photochromics for the Future. In: Miller, L.S., Mullin, J.B. (eds) Electronic Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3818-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3818-9_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6703-1

  • Online ISBN: 978-1-4615-3818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics