Advertisement

Electro-optic Effects in Liquid Crystals

  • E. P. Raynes

Abstract

Liquid crystal displays (LCDs) have become very well known and widely used in the past few years. They depend for their operation on a range of electro-optic effects found in oriented thin layers of liquid crystals (LCs). The previous chapter has described the chemistry and structures involved in the formation of liquid crystal phases, and the next chapter discusses the applications of liquid cr9stals. In this chapter the major electro-optic effects found in liquid crystals will be described and explained. All these electro-optic effects arise from the anisotropic physical properties induced by the orientational ordering of the rodlike molecules that constitute liquid crystals.

Keywords

Liquid Crystal Nematic Liquid Crystal Liquid Crystal Display Cholesteric Liquid Crystal Liquid Crystal Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chandrasekhar Liquid Crystals, Cambridge U. P., Cambridge (1977).Google Scholar
  2. 2.
    P. G. de Gennes, The Physics of Liquid Crystals, Oxford U. P., Oxford (1974).Google Scholar
  3. 3.
    W. H. de Jeu, Physical Properties of Liquid Crystal Materials Gordon and Breach, London, (1980).Google Scholar
  4. 4.
    Liquid Crystals: Their Physics, Chemistry and Applications (C. Hilsum and E. P. Raynes, eds.), The Royal Society of London (1983).Google Scholar
  5. 5.
    E. P. Raynes, In Electro-optic and Photorefractive Materials( P. Gunter, ed.), Springer-Verlag, Berlin (1986).Google Scholar
  6. 6.
    R. J. A. Tough and M. J. Bradshaw, J. Phys. (Paris) 44, 447 (1983).CrossRefGoogle Scholar
  7. 7.
    W. Maier and G. Meier, Z. Naturforsch. 16a, 262 (1961).Google Scholar
  8. 8.
    F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).CrossRefGoogle Scholar
  9. 9.
    H. J. Deuling, Mol. Cryst. Liq. Cryst. 27, 81 (1974).CrossRefGoogle Scholar
  10. 10.
    D. W. Berreman, Phil. Trans. R. Soc. Lond. A309, 203 (1983).CrossRefGoogle Scholar
  11. 11.
    V. Freedericksz and V. Zolina, Trans. Faraday Soc. 29, 919 (1933).CrossRefGoogle Scholar
  12. 12.
    M. Schadt and W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).CrossRefGoogle Scholar
  13. 13.
    C. H. Gooch and H. A. Tarry, J. Phys. D 8, 1575 (1975).CrossRefGoogle Scholar
  14. 14.
    A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, and A. J. Hughes, Appl. Phys. 24, 357 (1981).CrossRefGoogle Scholar
  15. 15.
    C. M. Waters, V. Brimmell, and E. P. Raynes, In Proc 3rd Int. Display Res. Conf. Kobe, Japan, 396 (1983).Google Scholar
  16. 16.
    E. P. Raynes, Mol. Cryst. Liq. Cryst. Lett. 4, 1 (1986).Google Scholar
  17. E. P. Raynes, Mol. Cryst. Liq. Cryst. Lett. 4, 69 (1987).Google Scholar
  18. 18.
    R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, J. Phys. 36, L-69 (1975).Google Scholar
  19. 19.
    M. J. Bradshaw, V. Brimmell, and E. P. Raynes, Liquid Crystals 2, 107 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. P. Raynes
    • 1
  1. 1.Royal Signals and Radar EstablishmentMalvernUK

Personalised recommendations