Advertisement

Geometry of Films of Amphiphile Molecules: A Curved Space Approach

  • J.-F. Sadoc
  • J. Charvolin
Part of the NATO ASI Series book series (NSSB, volume 229)

Abstract

Periodical organizations of two fluid media separated by interfaces are very common in liquid crystals where they most often occur under the forms of periodical stackings along one dimension of fluid layers of molecules . In lamellar phases of lyotropic liquid crystals , built by amphiphilic molecules in presence of water [1] , paraffinic bilayers of amphiphiles and polar layers of water are alternatively stacked with flat interfaces defined by the polar heads of the amphiphiles , as shown in fig. la . Besides these phases with periodicity along one dimension the phase diagrams of liquid crystalline systems may present other ordered phases with periodicities along two or three dimensions , curved interfaces and various topologies [1,2,3] . For instance consider the particular case of phases with cubic symmetry and bicontinuous topology . They are of the type shown in fig. 1b where a film of water without self-intersection separates two identical labyrinths of amphiphilic molecules . We wonder if the complex geometry of such structures could not rely upon the same principle than that which is easily discernable in the much simpler lamellar and smectic phases.

Keywords

Gaussian Curvature Curve Space Middle Surface Amphiphilic Molecule Hyperbolic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1-.
    Luzzati V., Biological Membranes 1 (1968) 71 , edited by D. Chapman ( Academic Press )Google Scholar
  2. 2-.
    Hardouin F., Levelut A.M., Achard M.F. and Sigaud G., J.Chim. Phys. 80 (1983) 53Google Scholar
  3. 3-.
    Diele S., Brand P. and Sackmann S., Mol. Cryst. Liq. Cryst. 17 (1972) 163CrossRefGoogle Scholar
  4. 3a-.
    Tardieu A. and Billard J., J. Physique 37 (1976) C3–79CrossRefGoogle Scholar
  5. 3b-.
    Etherington G., Leadbetter A.J., Wang X.J., Gray G.W. and Tabakhsh A., Liquid Crystals 1 (1986) 209CrossRefGoogle Scholar
  6. 4-.
    Sadoc J.F. and Mosseri R., Phil. Mag. B 45 (1982) 467 Sadoc J.F. and Mosseri R., Pour la Science , (jan. 1985)CrossRefGoogle Scholar
  7. 4a-.
    Mosseri R. in Du cristal à l’ amorphe , proceedings of the Beg Rohu Summer School 1986,Google Scholar
  8. 5-.
    Sadoc J.F. and Charvolin J., J. Physique 47 (1986) 683CrossRefGoogle Scholar
  9. 6-.
    Israelachvili J. N., Intermolecular and Surface forces , Academic Press (1985)Google Scholar
  10. 6a-.
    Coxeter H.S.M., Regular Complex Polytopes , Cambridge University Press ( 1974 )Google Scholar
  11. 6b-.
    Hilbert D. and Cohn-Vossen S., Geometry and the Imagination , Chelsea Publishing Company , New York (1983)Google Scholar
  12. 6c-.
    Coxeter H.S.M., Introduction to Geometry , John Wiley , New York (1961)Google Scholar
  13. 8-.
    The Schlafli notation p,q means that the tiling is made of polygons having p edges that meet q by q at each vertexGoogle Scholar
  14. 9-.
    Cartan E., G é om é trie des espaces de Riemann , page 189 , Gauthier Villars (1963)Google Scholar
  15. 9a-.
    Misner C.W., Thorne K.B. and Wheeler J.A., Gravitation , Freeman Cy , San Fransisco (1970)Google Scholar
  16. 10-.
    Friedel J., Proceedings of the sixth General Conference of the European Physical Society ,25 , Prague (1984)Google Scholar
  17. 11-.
    Sadoc J.F. and Mosseri R., J. Physique 45 (1984) 1025CrossRefGoogle Scholar
  18. 12-.
    Schwarz H.A., Gesammelte Mathematische Abhandlungen , Band 1 , Springer Verlag , Berlin (1890)CrossRefGoogle Scholar
  19. 13-.
    Schoen A.H., NASA Technical Note D-5541 , (1970)Google Scholar
  20. 14-.
    Tardieu A., Thesis , Université Paris-Sud Orsay (1972)Google Scholar
  21. 15-.
    Luzzati V., Mariani P. and Gulik-Krzywicki T., in Physics of Amphiphilic Layers , edited by D. Langevin and J. Meunier , Springer Verlag , to, be publishedGoogle Scholar
  22. 16-.
    Thomas E.L., Alward D.B., Kinning D.J., Martin D.C., Handlin D.J. and Fetters L.J., Macromolecules 19 (1986) 2197CrossRefGoogle Scholar
  23. 17-.
    Bicontinuous cubic phases are observed in the vicinity of lamellar ones , cubic phases with different topology may exist far from lamellar phases, in the vicinity of micellar phases, see for instance Eriksson P.O., Khan A. and Lindblom G., J. Phys. Chem. 86 ( 1982 ) 387CrossRefGoogle Scholar
  24. 18-.
    Longley W. and Mac Intosh J., Nature 303 (1983) 612CrossRefGoogle Scholar
  25. 18-.
    Gunning B.E.S., Protoplasma 60 (1965) 111CrossRefGoogle Scholar
  26. 26-.
    Luzzati V. and Spegt P.A., Nature 215 (1967) 701CrossRefGoogle Scholar
  27. 20-.
    Sadoc J.F. and Charvolin J., J. Physique 47 683 (1986)CrossRefGoogle Scholar
  28. 21-.
    Charvolin J. and Sadoc J.F., J. Physique 48 1559 (1987)CrossRefGoogle Scholar
  29. 22-.
    Cabos C., Delord P. and Martin J.C., J. Phys. Lett. 40 , L–407 (1979)CrossRefGoogle Scholar
  30. 23-.
    Luzzati V., private communicationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J.-F. Sadoc
    • 1
  • J. Charvolin
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance

Personalised recommendations