Anaerobic Production of Single-Domain Magnetite by the Marine, Magnetotactic Bacterium, Strain MV-1

  • Dennis A. Bazylinski


Bacteria whose direction of motility is influenced by the earth’s and applied magnetic fields are collectively referred to as the magnetotactic bacteria (Blakemore, 1975). These microorganisms represent a morphologically diverse group of bacteria that are ubiquitous in aquatic habitats and are apparently worldwide in distribution (Blakemore, 1982; Blakemore et al., 1989). Despite their ubiquity, the magnetotactic bacteria have proven notoriously difficult to isolate and grow in axenic culture (Moench and Konetzka, 1978; Blakemore, 1982). Since the report of their discovery in 1975 (Blakemore, 1975), only one species has been isolated and studied in any detail, Aquaspirillum magnetotacticum (Maratea and Blakemore, 1981). Recently, however, a second isolate has been obtained and designated strain MV-1 (Bazylinski et al., 1988). This organism, unlike A. magnetotacticum, is marine in origin and produces intracellular magnetite (Fe3O4) under strict anaerobic conditions (Bazylinski et al., 1988) and is the subject of this paper. A third species has apparently been isolated by Matsunaga and coworkers (T. Matsunaga, personal communication) but has only been described as a microaerophilic spirillum.


Terminal Electron Acceptor Microaerobic Condition Magnetotactic Bacterium Strict Anaerobic Condition Nitrous Oxide Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balkwill, D. L., Maratea, D., and Blakemore, R. P., 1980, Ultrastructure of a magnetotactic spirillum, J. Bacteriol., 141: 1399.PubMedGoogle Scholar
  2. Bazylinski, D. A., and Blakemore, R. P., 1983, Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum, Appl. Environ. Microbiol, 46: 1118.PubMedGoogle Scholar
  3. Bazylinski, D. A., Frankel, R B., and Jannasch, H. W., 1988, Anaerobic magnetite production by a marine magnetotactic bacterium, Nature (London), 334: 518.CrossRefGoogle Scholar
  4. Blakemore, R. P., 1975, Magnetotactic bacteria, Science, 190: 377.PubMedCrossRefGoogle Scholar
  5. Blakemore, R. P., 1982, Magnetotactic bacteria, Ann. Rev. Microbiol., 36: 217.CrossRefGoogle Scholar
  6. Blakemore, R. P., and Canale-Parola, E., 1973, Morphological and ecological characteristics of Spirochaeta plicatilis, Arch. Microbiol., 89: 273.Google Scholar
  7. Blakemore, R. P., Maratea, D., and Wolfe, R. S., 1979, Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium, J. Bacteriol., 140: 720.PubMedGoogle Scholar
  8. Blakemore, R. P., Short, K. A., Bazylinski, D. A., Rosenblatt, C., and Frankel, R. B., 1985, Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum, Geomicrobiol. J., 4: 53.CrossRefGoogle Scholar
  9. Blakemore, R. P., Blakemore, N. A., Bazylinski, D. A., and Moench, T. T., 1989, Magnetotactic bacteria, in: “Bergey’s Manual of Systematic Bacteriology”, Vol. 3, J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds., Williams and Wilkins.Google Scholar
  10. Butler, R. F., and Banerjee, S. K., 1975, Theoretical single domain grain size in magnetite and titanomagnetite, J. Geophys. Res., 80: 4049.CrossRefGoogle Scholar
  11. Chang, S.-B. R., and Kirschvink, J. L., 1984, Bacterial magnetofossils as probes of precambrian ecological and biochemical evolutionary events, Geol. Soc. Am. Bull., 16: 468.Google Scholar
  12. Chang, S.-B. R., Kirschvink, J. L., and Stoltz, J. F., 1987, Biogenic magnetite as a primary remanence carrier in limestone deposits, Phys. Earth Planet Inter., 46: 289.CrossRefGoogle Scholar
  13. Cleland, W. W., 1964, Dithiothreitol, a new protective reagent for SH groups, Biochemistry, 3: 480.PubMedCrossRefGoogle Scholar
  14. Costilow, R. N., 1981, Biophysical factors in growth, in: “Manual of Methods for General Bacteriology”, P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips, eds., American Society for Microbiology.Google Scholar
  15. Frankel, R. B., Blakemore, R. P., and Wolfe, R. S., 1979, Magnetite in freshwater magnetotactic bacteria, Science, 203: 1355.PubMedCrossRefGoogle Scholar
  16. Frankel, R. B., and Blakemore, R. P., 1980, Navigational compass in magnetic bacteria, J. Magn. Mag. Mat., 15–18: 1562.Google Scholar
  17. Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P., and O’Brien, W., 1983, Fe3O4 precipitation in magnetotactic bacteria, Biochim. Biophys. Acta, 763: 147.CrossRefGoogle Scholar
  18. Gorby, Y. A., Beveridge, T. J., and Blakemore, R. P., 1988, Characterization of the bacterial magnetosome membrane, J. Bacteriol., 170: 834.PubMedGoogle Scholar
  19. Hochstein, L. I., and Tomlinson, G. A., 1988, The enzymes associated with denitrification, Ann. Rev. Microbiol., 42: 231.CrossRefGoogle Scholar
  20. Holm, R. H., 1987, Metal-centered oxygen atom transfer reactions, Chem. Rev., 87: 1401.CrossRefGoogle Scholar
  21. Jacob, H.E., 1970, Redox potential, in: “Methods in Microbiology”, Vol. 2, J. R. Norris and D. W. Ribbons, eds., Academic Press, Inc.Google Scholar
  22. Jolly, W. L., 1964, “The Inorganic Chemistry of Nitrogen”, W. A. Benjamin, Inc.Google Scholar
  23. Jørgensen, K. S., Jensen, H. B., and Sørensen, J., 1984, Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations, Can. J. Microbiol., 30: 1073.CrossRefGoogle Scholar
  24. Karlin, R., Lyle, M., and Heath, G. R., 1987, Authigenic magnetite formation in suboxic marine sediments, Nature (London), 326: 490.CrossRefGoogle Scholar
  25. la Rivière, J. W. M., and Kuenen, J. G., 1989, Genus Thiospira, in: “Bergey’s Manual of Systematic Bacteriology”, Vol. 3, J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt, eds., Williams and Wilkins.Google Scholar
  26. Lovley, D. R., Stoltz, J. F., Nord Jr., G. L., and Phillips, E. J. P., 1987, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature (London), 330: 252.CrossRefGoogle Scholar
  27. Luria, S. E., 1960, The bacterial protoplasm: composition and organization, in: “The Bacteria”, Vol. 1, I. C. Gunsalus and R. Y. Stanier, eds., Academic Press, New York.Google Scholar
  28. Lyman, J., and Fleming, R. H., 1940, Composition of seawater, J. Mar. Res., 3: 134.Google Scholar
  29. Mann, S., 1985, Structure, morphology and crystal growth of bacterial magnetite, in: “Magnetite Biomineralization and Magnetoreception in Organisms”, J. L. Kirschvink, D. S. Jones, and B. J. MacFadden, eds., Plenum Press, New York.Google Scholar
  30. Mann, S., Frankel, R. B., and Blakemore, R. P., 1984a, Structure, morphology and crystal growth of bacterial magnetite, Nature (London), 310: 405.CrossRefGoogle Scholar
  31. Mann, S., Moench, T. T., and Williams, R. J. P., 1984b, A high resolution electron microscopic investigation of bacterial magnetite. Implications for crystal growth, Proc. R Soc. Lond. B, 221: 385.CrossRefGoogle Scholar
  32. Mann, S., Sparks, N. H. C., and Blakemore, R. P., 1987, Ultrastructure and characterization of anisotropic magnetite inclusions in magnetotactic bacteria, Proc. R. Soc. Lond. B, 231: 469.CrossRefGoogle Scholar
  33. Maratea, D., and Blakemore, R. P., 1981, Aquaspirillurn magnetotacticum sp. nov., a magnetic spirillum, Int. J. Syst. Bacteriol., 31: 452.CrossRefGoogle Scholar
  34. Matsuda, T., Endo, J., Osakabe, N., and Tonomura, A., 1983, Morphology and structure of biogenic magnetite particles, Nature (London), 302: 411.CrossRefGoogle Scholar
  35. Moench, T. T., and Konetzka, W. A., 1978, A novel method for the isolation and study of a magnetic bacterium, Arch. Microbiol., 119: 203.PubMedCrossRefGoogle Scholar
  36. Molisch, H., 1912, Neue farblose Schwefelbakterien, Zbl. Bakt. II Abt., 33: 55.Google Scholar
  37. Moskowitz, B. M., Frankel, R. B., Flanders, P. J., Blakemore, R. P., and Schwartz, B. B., 1988, Magnetic properties of magnetotactic bacteria, J. Magn. Magn. Mat., 73: 273.CrossRefGoogle Scholar
  38. Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W., and Lovley, D. R., 1989, A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria, Geophys. Res. Lett., 16: 665.CrossRefGoogle Scholar
  39. Rhoads, D. C., Mulsow, S. G., Gutschick, R., Baldwin, C. T., and Stolz, J. F., 1990, The dysaerobic zone revisited; a magnetic facies?, J. Geol. Soc. (London), submitted for publication.Google Scholar
  40. Seitzinger, S., Nixon, S. W., Pilson, N. E. Q., and Burke, S., 1980, Denitrification and N2O production in nearshore marine sediments, Geochim. Cosmochim. Acta, 44: 1853.CrossRefGoogle Scholar
  41. Seitzinger, S., Pilson, N. E. Q., and Nixon, S. W., 1983, Nitrous oxide production in nearshore marine sediments, Science, 222: 1244.PubMedCrossRefGoogle Scholar
  42. Seitzinger, S., Nixon, S. W., and Pilson, M. E. Q., 1984, Denitrification and nitrous oxide production in a coastal marine ecosystem, Limnol. Oceanogr., 29: 73.CrossRefGoogle Scholar
  43. Sørensen, J., 1978, Occurrence of nitric and nitrous oxides in a coastal marine sediment, Appl. Environ. Microbiol., 36: 809.PubMedGoogle Scholar
  44. Sparks, N. H. C., Mann, S., Bazylinski, D. A., Lovley, D. R., Jannasch, H. W., and Frankel, R. B., 1990, Structure and morphology of anaerobically-produced magnetite by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium, Earth Planet. Sci. Lett., in press.Google Scholar
  45. Stolz, J. F., Lovley, D. R., and Haggerty, 1990, Biogenic magnetite and the magnetization of sediments, J. Geophys. Res., in press.Google Scholar
  46. Towe, K. M., and Moench, T. T., 1981, Electron optical characterization of bacterial magnetite, Earth Planet. Sci. Lett, 52: 213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Dennis A. Bazylinski
    • 1
  1. 1.Department of Anaerobic MicrobiologyVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations