Advertisement

Structure-Activity Correlations for the Ferric Uptake Regulation (FUR) Repressor Protein of Escherichia Coli K12

  • Stephen del Cardayre
  • J. B. Neilands

Abstract

The purpose of this chapter will be to give an overview of certain features of microbial iron metabolism and to record what is known at the moment of writing regarding the molecular mechanism of regulation of high affinity iron absorption in Escherichia coli K-12. Evidence obtained by chemical modification experiments suggests that thiol groups may play a role in the activity of a protein (Fur) regulating iron absorption in this bacterial species.

Keywords

Ferric Uptake Regulation Aerobacter Aerogenes Operator Fragment Regulate Iron Absorption Ferric Uptake Regulation Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, F., 1983, Lactobacillus plantarum, an organism not requiring iron, FEMS Microbiol. Lettr., 19:29.CrossRefGoogle Scholar
  2. Bagg, A., and Neilands, J. B., 1987a, Molecular mechanism of regulation of siderophore-mediated iron assimilation, Microbiol. Rev., 51:509.PubMedGoogle Scholar
  3. Bagg, A., and Neilands, J. B., 1987b, Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli, Biochemistry, 26:5471.PubMedCrossRefGoogle Scholar
  4. Berg, J. M., 1986, Potential metal binding domains in nucleic acid binding proteins, Science, 232:485.PubMedCrossRefGoogle Scholar
  5. de Lorenzo, V., Wee, S., Herrero, M., and Neilands, J. B., 1987, Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor, J. Bacteriol., 169:2624.PubMedGoogle Scholar
  6. de Lorenzo, V., Giovannini, F., Herrero, M., and Neilands, J. B., 1988a, Metal ion regulation of gene expression. Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV0K30, J. Mol. Biol., 203:875.PubMedCrossRefGoogle Scholar
  7. de Lorenzo, V., Herrero, M., Giovannini, F., and Neilands, J. B., 1988b, Fur (ferrie uptake regulation) protein and CAP (catabolite activator protein) modulate transcription of fur gene in Escherichia coli, Eur. J. Biochem., 173:537.PubMedCrossRefGoogle Scholar
  8. Drummond, M., and Wootton, J., 1987, Sequence of nifL from Klebsiella pneumoniae: mode of action and relationship to two families of regulatory proteins, Mol. Microbiol., 1:37.PubMedCrossRefGoogle Scholar
  9. Ernst, J. F., Bennett, R. L., and Rothfield, L. I., 1978, Constitutive expression of the iron enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium, J. Bacteriol., 135: 928.PubMedGoogle Scholar
  10. Fischer, H. M., Bruderer, T., and Hennecke, H., 1988, Essential and nonessential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox activity and/or metal binding, Nucleic Acids Res., 16:2207.PubMedCrossRefGoogle Scholar
  11. Fried, M., and Crothers, D. M., 1981, Equilibria and kinetics of lac repressor-operator interaction by Polyacrylamide gel electrophoresis, Nucl. Acids Res., 9:6505.PubMedCrossRefGoogle Scholar
  12. Garibaldi, J. A., and Neilands, J. B., 1956, Formation of iron binding compounds by microorganisms, Nature (London), 177:526.PubMedCrossRefGoogle Scholar
  13. Gibson, F., and Magrath, D. J., 1969, The isolation and characterization of a hydroxamic acid (aerobactin) from Aerobacter aerogenes 62–I, Biochim. Biophys. Acta, 192:175.PubMedCrossRefGoogle Scholar
  14. Griggs, D. W., and Konisky, J., 1989, Mechanism for iron regulated transcription of the Escherichia coli cir gene: metal dependent binding of Fur protein to the promoters, J. Bacteriol., 171:1048.PubMedGoogle Scholar
  15. Gutteridge, J. M. C., Rowley, D. A., and Halliwell, B., 1981, Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts, Biochem. J., 199:263.PubMedGoogle Scholar
  16. Hantke, K., 1981, Regulation of ferric ion transport in E. coli: isolation of a constitutive mutant, Mol. Gen. Genet., 182:288.PubMedCrossRefGoogle Scholar
  17. Hentze, M. W., Rouault, T. A., Harford, J. B., and Klausner, R„ D., 1989, Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction, Science, 244:357.PubMedCrossRefGoogle Scholar
  18. Jocelyn, P. C., 1987, Spectrophotometry assay of thiols, Meth. Enzymol., 143, 44.PubMedCrossRefGoogle Scholar
  19. Lankford, C. E., 1973, Bacterial assimilation of iron, Crit. Rev. Microbiol., 2:273.CrossRefGoogle Scholar
  20. Nakamura, K., de Lorenzo, V., and Neilands, J. B., 1989, Studies on the Fur regulon of Escherichia coli K-12, in “Metal-DNA Chemistry”, T. D. Tullius, ed., American Chemical Society, Washington, D.C.Google Scholar
  21. O’Brien, I. G., and Gibson, F., 1970, The structure of enterochelin and related 2,3-dihydroxy-N-benzoyl-serine conjugates from Escherichia coli. Biochim. Biophys. Acta, 215:393.PubMedCrossRefGoogle Scholar
  22. Pollack, J. R., and Neilands, J. B., 1970, Enterobactin, an iron transport compound from Salmonella typhimurium, Biochem. Biophys. Res. Commun., 38:989.PubMedCrossRefGoogle Scholar
  23. Poole, K., and Braun, V., 1988, Iron regulation of Serratia marcescens hemolysin gene expression, Infect. Immun., 56:2967.PubMedGoogle Scholar
  24. Schaffer, S., Hantke, K., and Braun, V., 1985, Nucleotide sequence of the iron regulatory gene fur, Mol. Gen. Genet., 201:204.CrossRefGoogle Scholar
  25. Spiro, S., and Guest, J. R., 1988, Inactivation of the FNR protein of Escherichia coli by targeted mutagenesis in the N-terminal region, Mol. Microbiol., 2:701.PubMedCrossRefGoogle Scholar
  26. Stoebner, J. A., and Payne, S. M., 1988, Iron regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae, Infect. Immun. 56:2891.PubMedGoogle Scholar
  27. Tai, S-P. S., and Holmes, R. K., 1988, Iron regulation of the cloned diphtheria toxin promoter in Escherichia coli, Infect. Immun., 56: 2430.PubMedGoogle Scholar
  28. Warner, P. J., Williams, P. H., Bindereif, A., and Neilands, J. B., 1981, ColV-plasmid specified aerobactin synthesis by invasive strains of Escherichia coli, Infect, Immun., 33:540.Google Scholar
  29. Wee, S., Neilands, J. B., Bittner, M. L., Hemming, B. C., Haymore, B. L., and Seethram, R., 1988, Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli K-12, Biol. Metals, 1:62.CrossRefGoogle Scholar
  30. Williams, P. H., 1979, Novel iron uptake system specified by ColV plasmids: an important component of the virulence of invasive strains of Escherichia coli, Infect. Immun. 26:925.PubMedGoogle Scholar
  31. Williams, R. J. P., 1982, Free magnanese (II) and iron (II) cations can act as intracellular controls, FEBS Lettr., 140:3.CrossRefGoogle Scholar
  32. Wollenberg, P., and Rummel, W., 1987, Dependence of intestinal iron absorption on the valency state of iron, Arch. Pharmacol., 336:578.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Stephen del Cardayre
    • 1
  • J. B. Neilands
    • 1
  1. 1.Biochemistry DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations