Ferritin: A Model System for Iron Biomineralization

  • P. J. Artymiuk
  • E. R. Bauminger
  • P. M. Harrison
  • D. M. Lawson
  • I. Nowik
  • A. Treffry
  • S. J. Yewdall


Iron plays an essential role in many metabolic functions such as electron transfer and oxygen transport. Although it can sometimes be replaced for a specific function, e.g. the Cu-containing haemocyanins carry oxygen in some arthropods and molluscs, there are very few organisms, possibly only some lactobacilli for which it is not an essential element. Iron biology must reflect its chemical properties. At physiological pH free unco-ordinated Fe(III) is highly insoluble (10-17M at pH7) readily hydrolysing and precipitating as oxyhydroxide and this can act as a powerful driving force for the oxidation of Fe(II). These properties have been exploited by the ferritin molecule, which is designed to enable Fe(II) oxidation and hydrolysis to take place within the confined interior of a protein shell1,2. The ferric oxyhydroxide so formed is a crystalline mineral known as fer rihydrite. In ferritin the particle size of the mineral is limited to less than 8.0nm diameter, the size of the cavity in iron-free coat protein (apoferritin). Since the three-dimensional structure of apoferritin is known, since it can be altered by site-directed mutagenesis and since the formation of its ferrihydrite “iron-core” can be investigated by a variety of spectroscopic methods and by electron microscopy, ferritin provides a good model system for studies of iron biomineralization. Nevertheless, it is not a simple system.


Hydrolysis Codon Manganese Citrate Superoxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.C. Ford, P.M. Harrison, D.W. Rice, J.M.A. Smith, A. Treffry, J.L. White and J. Yariv, Ferritin: design and formation of an iron storage molecule, Phil. Trans. Roy. Soc. Lond. B304:551–565 (1984).Google Scholar
  2. 2.
    P.M. Harrison, P.J. Artymiuk, G.C. Ford, D.M. Lawson, J.M.A. Smith, A. Treffry, and J.L. White, Ferritin: Function and structural design of an iron storage protein, in: “Biomineralisation: Chemical and Biochemical Perspectives”, S. Mann, J.Webb and R.J.P. Williams, eds., VCH Verlagsgesellschaft, Weinheim. pp257–294 (1989).Google Scholar
  3. 3.
    E.C. Theil, Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms, Ann. Rev Biochem. 56:289–315 (1987).CrossRefPubMedGoogle Scholar
  4. 4.
    I.G. Macara, T.G. Hoy and P.M. Harrison, The formation of ferritin from apoferritin: kinetics and mechanisms of iron uptake, Biochem. J. 126:151–162 (1972).PubMedGoogle Scholar
  5. 5.
    J.S. Rohrer, M.-S. Joo, E. Dartyge, D.E. Sayers, A. Fontaine and E.C. Theil, Stabilization of iron in a ferrous form by ferritin: a study using dispersive and conventional X-ray absorption spectroscopy, J. Biol. Chem. 262:13385–13387 (1987).PubMedGoogle Scholar
  6. 6.
    R.B. Frankel, G.C. Papaefthymiou, and G.D. Watts, Binding of Fe2+ by mammalian ferritin, Hyperfine Interact. 33:233–240 (1987).CrossRefGoogle Scholar
  7. 7.
    G.D. Watt, R.B. Frankel and G.C. Papaefthymiou, reduction of mammalian ferritin, Proc. Natl. Acad. Sci. USA 82:3640–3643 (1985).CrossRefPubMedGoogle Scholar
  8. 8.
    A. Treffry, P.M. Harrison, M.I. Cleton, W. de Bruijn and S. Mann, A note on the composition and properties of ferritin iron cores, J. Inorg. Biochem. 31:1–6 (1987).CrossRefPubMedGoogle Scholar
  9. 9.
    S. Mann, J.V. Bannister, R.J.P. Williams, Structure and function of ferritin iron cores isolated from human spleen, limpet (Patella vulgata) haemolymph and bacterial (Pseudomonas aeruginosa) cells, J. Mol. Biol. 188:225–232 (1986).CrossRefPubMedGoogle Scholar
  10. 10.
    S. Levi, A. Luzzago, A. Cozzi, F. Franceschinelli, G. Cesareni and P. Arosio, Functional roles of H and L chains of human ferritin, Ligand Quarterly 7(suppl.2): 23–34 (1988).Google Scholar
  11. 11.
    B. Halliwell and J.M.C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219:1–14 (1984).PubMedGoogle Scholar
  12. 12.
    J.-P. Laulhere, A.-M. Lescure and J.-F. Briat, Purification and characterization of ferritins from maize, pea and soyabean seeds, J. Biol. Chem. 263:10289–10294 (1988).PubMedGoogle Scholar
  13. 13.
    S.C. Andrews, J.M.A. Smith, J.R. Guest and P.M. Harrison, Amino acid sequence of the bacterioferritin (cytochrome b1) of Escherichia coli -K12, Biochem. Biophys. Res. Commun. 158:489–496 (1989).CrossRefPubMedGoogle Scholar
  14. 14.
    E.I. Stiefel and G.D. Watt, Azotobacter cytochrome b557.5 is a bacterioferritin, Nature Lond. 279:81–83 (1979).CrossRefPubMedGoogle Scholar
  15. 15.
    P. Arosio, T.G. Adelman and J.W. Drysdale, On ferritin heterogeneity, J. Biol. Chem. 253:4451–4458 (1978).PubMedGoogle Scholar
  16. 16.
    M. Heusterspreute and R.R. Crichton, Amino acid sequence of horse spleen apoferritin, FEBS Lett. 129:322–327 (1981).CrossRefPubMedGoogle Scholar
  17. 17.
    D.M. Lawson, P.J. Artymiuk, G.W. Farrants, D.W. Rice, J.L. White, G.C.Ford and P.M. Harrison, unpublished work.Google Scholar
  18. 18.
    D.M. Lawson, P.J. Artymiuk, S.J. Yewdall, A. Treffry, A. Luzzago, G. Cesareni, S. Levi, P. Arosio and P.M. Harrison, unpublished work.Google Scholar
  19. 19.
    K.M. Towe and W.F. Bradley, Mineralogical constitution of colloidal ‘hydrous ferric oxides’, J. Colloid Interface Sci. 24:384–392 (1967).CrossRefGoogle Scholar
  20. 20.
    P.M. Harrison, F.A. Fischbach, T.G. Hoy and G.H. Haggis, Ferric oxyhydroxide cores of ferritin. Nature Lond. 216:1188–1190 (1967).CrossRefPubMedGoogle Scholar
  21. 21.
    A. Blaise, J. Chappert, and J.-L. Girardet, Observation par measures magnétiques et effet Mossbauer d’un antiferromagnétisme de grains fins dans la ferritine, C.R. Acad. Sci. Paris 261:2310–2313 (1965).Google Scholar
  22. 22.
    A.A. van der Giessen, The structure of iron(II) oxide-hydrate gels, J. Inorg. Nucl. Chem. 28:2155–2159 (1966).CrossRefGoogle Scholar
  23. 23.
    A. Treffry and P.M. Harrison, The binding of ferrie iron by ferritin, Biochem J. 181:709–716 (1979).PubMedGoogle Scholar
  24. 24.
    S. Mann, J.W. Williams, A. Treffry and P.M. Harrison, reconstituted and native iron cores of bacterioferritin and ferritin, J. Mol. Biol. 198:405–416 (1987).CrossRefPubMedGoogle Scholar
  25. 25.
    J.M. Williams, D.P. Danson, C.H.R. Janot, A Mossbauer determination of the iron core particle size distribution in ferritin, Phys. Med. Biol. 23:835–851 (1978).CrossRefPubMedGoogle Scholar
  26. 26.
    A. Treffry and P.M. Harrison, Incorporation and release of inorganic phosphate in horse spleen ferritin, Biochem J. 171:313–320 (1978).Google Scholar
  27. 27.
    S.C. Andrews, M.C. Brady, A. Treffry, J.M. Williams, S. Mann, M.I. Cleton, W. de Bruijn and P.M. Harrison, Studies on haemosiderin and ferritin from iron-loaded rat liver, Biol. Metals 1:33–42 (1988).CrossRefGoogle Scholar
  28. 28.
    W. Niederer, Ferritin, iron incorporation and release, Experientia 26:218–220 (1970).CrossRefPubMedGoogle Scholar
  29. 29.
    CF.A. Bryce and R.R. Crichton, The catalytic activity of horse spleen apoferritin: preliminary kinetic studies and the effect of chemical modification, Biochem. J. 133:301–309 (1973).PubMedGoogle Scholar
  30. 30.
    I.G. Macara, T.G. Hoy and P.M. Harrison, The formation of ferritin from apoferritin, Biochem. J. 135:343–348 (1973).PubMedGoogle Scholar
  31. 31.
    A. Treffry, J.M. Sowerby, and P.M. Harrison, Oxidant specificity in ferritin formation, FEBS Lett. 100:33–36 (1979).CrossRefPubMedGoogle Scholar
  32. 32.
    A. Treffry, J.M. Sowerby and P.M. Harrison, Variable stoichiometry of Fe(II)-oxidation in ferritin, FEBS Lett. 95:221–224 (1978).CrossRefPubMedGoogle Scholar
  33. 33.
    B.G. Goldner, A.L. Rhinehart, H.M. Benshoff and D.C. Harris, Model system oxidations supporting the crystal growth model of ferritin iron uptake, Biochim. Biophys. Acta 719:641–643 (1982).CrossRefPubMedGoogle Scholar
  34. 34.
    G. Melino, S. Stefanini, E. Chiancone, E. Antonini and A. Finazzi Agrò, Stoichiometry of iron oxidation by apoferritin, FEBS Lett. 86:136–138 (1978).CrossRefPubMedGoogle Scholar
  35. 35.
    T.G. Hoy, P.M. Harrison and M. Shabbir, Uptake and release of ferritin iron, Biochem. J. 139:603–607 (1974).PubMedGoogle Scholar
  36. 36.
    E.R. Bauminger, P.M. Harrison, I. Nowik and A. Treffry, Mossbauer spectroscopic study of the initial stages of iron core formation in horse spleen apoferritin: Evidence for both isolated Fe(III) atoms and oxo-bridged Fe(III) dimers as early intermediates. Biochemistry 25:5486–5493 (1989).CrossRefGoogle Scholar
  37. 37.
    D.P.E. Dickson, N.M.K. Reid, S. Mann, V.J. Wade, R.J. Ward and T.J. Peters, Mossbauer spectroscopy, electron microscopy and electron diffraction studies of iron cores in various human and animal haemosiderins, Biochim. Biophys. Acta 957:81–90 (1988).CrossRefPubMedGoogle Scholar
  38. 38.
    S. Mørup and J.E. Knudsen, Mossbauer-spectroscopy applied to solution chemistry, Acta Chim. Hung. 121(1–2):147–171 (1986).Google Scholar
  39. 39.
    N.D. Chasteen and E.C. Theil, Iron binding by horse spleen apoferritin, J. Biol. Chem. 257:7672–7677 (1982).PubMedGoogle Scholar
  40. 40.
    A. Treffry and P.M. Harrison, Spectroscopic studies on the binding of iron, terbium and zinc by apoferritin, J. Inorg. Biochem. 21:9–20 (1984).CrossRefPubMedGoogle Scholar
  41. 41.
    C. Yang, A. Meagler, B.H. Huynh, D.E. Sayers and E.C. Theil, Iron(III) clusters bound to horse spleen apoferritin: An X-ray absorption and Mossbauer spectroscopic study that shows that iron nuclei can form on the protein. Biochemistry 26:497–503 (1987).CrossRefPubMedGoogle Scholar
  42. 42.
    M. Wagstaff, M. Worwood and A. Jacobs, Properties of human tissue isoferritins, Biochem. J. 173:969–977 (1978).PubMedGoogle Scholar
  43. 43.
    S.H. Russell and P.M. Harrison, Heterogeneity in horse ferritins, Biochem. J. 175:91–104 (1978).PubMedGoogle Scholar
  44. 44.
    S. Levi, A. Luzzago, G. Cesareni, A. Cozzi, F. Franceschinelli, A. Albertini and P. Arosio, Mechanisms of ferritin iron uptake: activity of the H chain and deletion mapping of the ferroxidase site, J. Biol. Chem. 263:18086–18092 (1988).PubMedGoogle Scholar
  45. 45.
    S. Levi, J. Salfeld, F. Franceschinelli, A. Cozzi, M.H. Dorner, P. Arosio, Expression and structural and functional properties of human ferritin L-chain from Escherichia coli, Biochemistry 28: 5179–5184 (1989).CrossRefPubMedGoogle Scholar
  46. 46.
    D.M. Lawson, A. Treffry, P.J. Artymiuk, P.M. Harrison, S.J. Yewdall, A. Luzzago, G. Cesareni, S. Levi and P. Arosio, Identification of the ferroxidase centre in ferritin, FEBS Lett. 254:207–210 (1989).CrossRefPubMedGoogle Scholar
  47. 47.
    D. Boyd, C. Vecoli, D.M. Belcher, S.K. Jain and J.W. Drysdale, Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones, J. Biol. Chem. 260:11755–11761 (1985).PubMedGoogle Scholar
  48. 48.
    M.J. Murray, K. White and H.N. Munro, Conservation of ferritin heavy subunit gene structure: implications for the regulation of ferritin gene expression, Proc. Natl. Acad. Sci. USA 84:7438–7442 (1987).CrossRefPubMedGoogle Scholar
  49. 49.
    C. Beaumont, I. Dugast, F. Renaudie, M. Souroujon and B. Grandchamp, Transcriptional regulation of ferritin H and L subunits in adult erythroid and rat liver cells from the mouse, J. Biol. Chem. 264: 7498–7504 (1989).PubMedGoogle Scholar
  50. 50.
    P.W. Stevens, J.B. Dodgson and J.D. Engel, Structure and expression of the chicken ferritin H subunit gene, Molec. and Cell. Biol. 7:1751–1758 (1987).Google Scholar
  51. 51.
    E.A. Leibold and H.N. Munro, Characterization and evolution of the expressed rat ferritin light subunit gene and its pseudogene family: conservation of sequences within non-coding regions of ferritin genes, J.Biol.Chem. 262:7335–7341 (1987).PubMedGoogle Scholar
  52. 52.
    S. Daniels-McQueen, A. Ray, W.E. Walden, B.K. Ray, P.H. Brown and R.E. Thach, Nucleotide sequence of cDNA encoding rabbit ferritin L chain, Nucleic Acids Res. 16:7741 (1988).CrossRefPubMedGoogle Scholar
  53. 53.
    J.G. Wardeska, B. Viglione, N.D. Chasteen, Metal ion complexes of apoferritin, J. Biol. Chem. 261:6677–6683 (1986).PubMedGoogle Scholar
  54. 54.
    A. Treffry, P.M. Harrison, A. Luzzago, G. Cesareni, Recombinant H-chain ferritins: effects of changes in the 3-fold channels, FEBS Lett. 247:268–272 (1989).CrossRefPubMedGoogle Scholar
  55. 55.
    S. Levi, A. Luzzago, F. Franceschinelli, P. Santambrogio, G. Cesareni and P. Arosio, Mutational analysis of the channel sequences of human ferritin H chain, Biochem. J. 264:381–388 (1989).PubMedGoogle Scholar
  56. 56.
    S. Stefanini, A. Desideri, P. Vecchini, T. Drakenberg and E. Chiancone, Identification of the iron entry channels in apoferritin. Chemical modification and spectroscopic studies, Biochemistry 28:378–382 (1989).CrossRefPubMedGoogle Scholar
  57. 57.
    G.R. Bakker and R.F. Boyer, Iron incorporation into apoferritin, J. Biol. Chem. 261:13182–13185 (1986).PubMedGoogle Scholar
  58. 58.
    A. Treffry and P.M. Harrison, The search for iron(II) oxidation sites on ferritin, in: “IXth International Conference on Proteins of Iron Transport and Storage”, Brisbane, p3 (1989).Google Scholar
  59. 59.
    L.P. Rosenberg, N.D. Chasteen, Initial iron binding to horse spleen apoferritin, in: “The Biochemistry and Physiology of Iron”, P. Saltman and J. Hegenauer, ed., pp405–407, Elsevier Biomedical, New York (1982).Google Scholar
  60. 60.
    S. Levi, P. Arosio, F. Francescheinelli, A. Cozzi, P. Santambrogio, A. Luzzago and G. Cesareni, Characterization of human ferritin H-chain mutants, in: “IXth International Conference on Proteins of Iron Transport and Storage”, Brisbane, p81 (1989).Google Scholar
  61. 61.
    S. Roberts and A. Bomford, Ferritin iron kinetics and protein turnover in K562 cells, J. Biol. Chem. 263:19181–19187 (1988).PubMedGoogle Scholar
  62. 62.
    G.D. Watt, D. Jacobs and R.B. Frankel, Redox reactivity of bacterial and mammalian ferritin: Is reductant entry into the ferritin interior a necessary step for iron release? Proc. Natl. Acad. Sci. USA. 85:7457–7461 (1988).CrossRefPubMedGoogle Scholar
  63. 63.
    J.S. Rohrer, E.C. Theil, R.B. Frankel and G.C. Papaefthymiou, Protein coats of ferritin can sequester large amounts of ferrous iron, Inorg. Chem. 28:3393–3395 (1989).CrossRefGoogle Scholar
  64. 64.
    D. Jacobs, G.D. Watt, R.B. Frankel and G.C. Papaefthymiou, Fe2+ binding to apo and holo mammalian ferritin, Biochemistry 28:9216–9221 (1989).CrossRefPubMedGoogle Scholar
  65. 65.
    R.J.P. Williams, Free manganese(II) and iron(II) cations can act as intracellular cell controls, FEBS Lett. 140:3–10 (1982).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. J. Artymiuk
    • 1
  • E. R. Bauminger
    • 2
  • P. M. Harrison
    • 1
  • D. M. Lawson
    • 1
  • I. Nowik
    • 2
  • A. Treffry
    • 1
  • S. J. Yewdall
    • 1
  1. 1.The Krebs Institute, Department of Molecular Biology and BiotechnologyThe UniversitySheffieldUK
  2. 2.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations